Preview

Дальневосточный журнал инфекционной патологии

Расширенный поиск

ОЦЕНКА ВЛИЯНИЯ ПОЛИМОРФИЗМОВ ГЕНОМА ВИРУСА ГЕПАТИТА С НА ФОРМИРОВАНИЕ ГЕПАТОЦЕЛЛЮЛЯРНОЙ КАРЦИНОМЫ (ОБЗОР ЛИТЕРАТУРЫ)

https://doi.org/10.62963/2073-2899-2025-49-16-25

Аннотация

Цель обзора: провести оценку влияния вируса гепатита С (ВГС) и полиморфизмов его генома на формирование гепатоцеллюлярной карциномы (ГЦК).

Основные положения: Развитие ГЦК остается нерешенным и сложным вопросом современной системы здравоохранения. Одним из наиболее значимых факторов риска формирования ГЦК является инфицирование гепатотропными вирусами, в частности ВГС. Установлено, что все белки ВГС (Core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B) так или иначе приводят к нарушениям клеточного деления и работы иммунной системы, включая снижение эффективности NK- и T-клеток. Ингибирование активности проапоптотического белка p53, снижение выработки интерферонов и их противовирусной активности, а также дисрегуляция работы белков супрессоров опухолевого роста провоцируют развитие опухолевого процесса в тканях печени. Высокая изменчивость ВГС обусловлена частым возникновением мутаций в его геноме, часть из которых может приводить к возникновению аминокислотных замен в вирусных протеинах и еще больше усиливать проонкогенные процессы в организме больного. Такие мутации изучены для генов E2, NS5A, но в большей степени – для core гена вируса. Заключение: Наиболее часто встречающимися аминокислотными заменами в core-белке ВГС,закрепившимися в популяции вируса и выявляемыми в когорте пациентов с ГЦК, являются R70Q/H, L91M и K10Q/R. Проведенный анализ существующей научной литературы по данной теме подтвердил актуальность изучения и оценки распространенности полиморфизмов ВГС, провоцирующих развитие ГЦК среди пациентов с хроническим вирусным гепатитом С, что может стать базой для создания тест-системы, основанной на методике ПЦР с целью выявления пациентов, инфицированных вариантами ВГС с наличием проонкогенных генетических детерминант в геноме для прогнозирования развития злокачественного процесса.

Об авторах

Е. А. Базыкина
ФБУН Хабаровский НИИ эпидемиологии и микробиологии Роспотребнадзора
Россия

Базыкина Елена Анатольевна – научный сотрудник

680000, г. Хабаровск, ул. Шевченко, 2

+7 (4212) 46-18-54



О. Е. Троценко
ФБУН Хабаровский НИИ эпидемиологии и микробиологии Роспотребнадзора
Россия

г. Хабаровск



Список литературы

1. Кичатова В. С., Соболева Н. В., Карлсен А. А., и др. Клинически значимые полиморфизмы в геноме вируса гепатита С среди генотипов вируса, наиболее распространенных на территории Российской Федерации // Актуальные вопросы эпидемиологии, диагностики, лечения и профилактики инфекционных и онкологических заболеваний. Москва, 2019. – C. 29-41.

2. Abdullah M. A. F., McWhirter S. M., Suo Z. Modulation of Kinase Activities In Vitro by Hepatitis C Virus Protease NS3/NS4A Mediated-Cleavage of Key Immune Modulator Kinases // Cells. – 2023. – Vol. 12, № 3. – P. 406. DOI: 10.3390/cells12030406.

3. Akinyemiju T., Abera S., Ahmed M., et al. The Burden of Primary Liver Cancer and Underlying Etiologies from 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015 // JAMA Oncol. – 2017. – №. 3. – P. 1683–1691. DOI: 10.1001/jamaoncol.2017.3055.

4. Akuta N., Suzuki F., Kawamura Y., et al. Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis // Hepatology. – 2007. – Vol. 46, № 5. – P. 1357-1364. DOI: 10.1002/hep.21836.

5. Akuta N., Suzuki F., Seko Y., et al. Complicated relationships of amino acid substitution in hepatitis C virus core region and IL28B genotype influencing hepatocarcinogenesis // Hepatology. – 2012. – Vol. 56, № 6. – P. 2134-2141. DOI: 10.1002/hep.25949.

6. Alam S. S., Nakamura T., Naganuma A., et al. Hepatitis C virus quasispecies in cancerous and noncancerous hepatic lesions: the core protein-encoding region // Acta Med. Okayama. – 2002. – № 56. – Р. 141–147.

7. Amougou-Atsama M., Jean Adrien Atangana P., Noah Noah D., et al. The role of hepatitis C virus genotypes and core mutations in hepatocellular carcinoma in Cameroon // J Viral Hepat. – 2020. – Vol. 27, № 9. – P. 880-885. DOI: 10.1111/jvh.13303.

8. Antonucci G., Girardi E., Cozzi-Lepri A., et al. Role of hepatitis C virus (HCV) viremia and HCV genotype in the immune recovery from highly active antiretroviral therapy in a cohort of antiretroviral-naive HIV-infected individuals // Clin Infect Dis. – 2005. – Vol. 40, № 12. – P. e101-e109. DOI: 10.1086/430445.

9. Anzola M. Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis // J Viral Hepat. – 2004. – Vol. 11, № 5. – P. 383-393. DOI: 10.1111/j.1365-2893.2004.00521.x.

10. Atoom A. M., Taylor N. G., Russell R. S. The elusive function of the hepatitis C virus p7 protein // Virology. – 2014. – Vol. 462. № 463. – P. 377-387. DOI: 10.1016/j.virol.2014.04.018.

11. Araujo O. C., Barros J. J., do Ó K. M., et al. Genetic variability of hepatitis B and C viruses in Brazilian patients with and without hepatocellular carcinoma // J Med Virol. – 2014. – Vol. 86, № 2. – P. 217-223. DOI: 10.1002/jmv.23837.

12. Arora P., Basu A., Schmidt M. L., et al. Nonstructural protein 5B promotes degradation of the NORE1A tumor suppressor to facilitate hepatitis C virus replication // Hepatology. – 2017. – Vol. 65, № 5. – P. 1462-1477. DOI: 10.1002/hep.29049.

13. Bagaglio S., De Mitri M. S., Lodrini S., et al. Mutations in the E2-PePHD region of hepatitis C virus type 1b in patients with hepatocellular carcinoma // J Viral Hepat. – 2005. – Vol. 12, № 3. – P. 243-250. DOI: 10.1111/j.1365-2893.2005.00589.x.

14. Bittar C., Shrivastava S., Bhanja Chowdhury J., et al. Hepatitis C virus NS2 protein inhibits DNA damage pathway by sequestering p53 to the cytoplasm // PLoS One. – 2013. – Vol. 8, № 4. – P. e62581. DOI: 10.1371/journal.pone.0062581.

15. Blight K. J. Charged residues in hepatitis C virus NS4B are critical for multiple NS4B functions in RNA replication // J Virol. – 2011. – Vol. 85, № 16. – P. 8158-8171. DOI: 10.1128/JVI.00858-11.

16. Chang K. C., Wu Y. Y., Hung C. H., t al. Clinical-guide risk prediction of hepatocellular carcinoma development in chronic hepatitis C patients after interferon-based therapy // Br J Cancer. – 2013. – № 109. – P. 2481–2488.

17. Chen S., Harris M. NS5A domain I antagonises PKR to facilitate the assembly of infectious hepatitis C virus particles // PLoS Pathog. – 2023. – Vol. 19, № 2. – P. e1010812. DOI: 10.1371/journal.ppat.1010812.

18. Cho J., Baek W., Yang S., et al. HCV core protein modulates Rb pathway through pRb down-regulation and E2F-1 up-regulation // Biochim Biophys Acta. – 2001. – Vol. 1538, № 1. – P. 59-66. DOI: 10.1016/s0167-4889(00)00137-3.

19. Dabral P., Khera L., Kaul R. Host proteins associated with Hepatitis C virus encoded NS4A // Virusdisease. – 2014. – Vol. 25, № 4. – P. 493-496. DOI: 10.1007/s13337-014-0240-x.

20. Datfar T., Doulberis M., Papaefthymiou A., et al. Viral Hepatitis and Hepatocellular Carcinoma: State of the Art // Pathogens. – 2021. – Vol. 10, № 11. – P. 1366. DOI: 10.3390/pathogens10111366.

21. David N., Yaffe Y., Hagoel L., et al. The interaction between the hepatitis C proteins NS4B and NS5A is involved in viral replication // Virology. – 2015. – № 475. – P. 139-149. DOI: 10.1016/j.virol.2014.10.021.

22. Deng L., Solichin M. R., Adyaksa D. N. M., et al. Cellular Release of Infectious Hepatitis C Virus Particles via Endosomal Pathways // Viruses. – 2023. – Vol. 15, № 12. – P. 2430. DOI: 10.3390/v15122430.

23. Diaz O., Vidalain P. O., Ramière C., et al. What role for cellular metabolism in the control of hepatitis viruses? // Front Immunol. – 2022. – № 13. – P. 1033314. DOI: 10.3389/fimmu.2022.1033314.

24. Einav S., Sklan E. H., Moon H. M., et al. The nucleotide binding motif of hepatitis C virus NS4B can mediate cellular transformation and tumor formation without Ha-ras co-transfection // Hepatology. – 2008. – Vol. 47, № 3. – P. 827-835. DOI: 10.1002/hep.22108.

25. El-Serag H. B., Rudolph K. L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis // Gastroenterology. – 2007. – № 132. – P. 2557–2576. DOI: 10.1053/j.gastro.2007.04.061.

26. El-Shamy A., Eng F. J., Doyle E. H., et al. A cell culture system for distinguishing hepatitis C viruses with and without liver cancer-related mutations in the viral core gene // J Hepatol. – 2015. – Vol. 63, № 6. – P. 1323-1333. DOI: 10.1016/j.jhep.2015.07.024.

27. El-Shamy A., Shindo M., Shoji I., et al. Polymorphisms of the core, NS3, and NS5A proteins of hepatitis C virus genotype 1b associate with development of hepatocellular carcinoma // Hepatology. – 2013. – Vol. 58, № 2. – P. 555-563. DOI: 10.1002/hep.26205.

28. Brahim I., Ezzikouri S., Mtairag el M., et al. Amino acid substitutions in the Hepatitis C virus core region of genotype 1b in Moroccan patients // Infect Genet Evol. – 2013. – № 14. – P. 102-104. DOI: 10.1016/j.meegid.2012.10.006.

29. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma // J Hepatol. – 2018. – № 69. – P. 182–236. DOI: 10.1016/j.jhep.2018.03.019.

30. Fishman S. L., Factor S. H., Balestrieri C., et al. Mutations in the hepatitis C virus core gene are associated with advanced liver disease and hepatocellular carcinoma // Clin Cancer Res. – 2009. – Vol. 15, № 9. – P. 3205-3213. DOI: 10.1158/1078-0432.CCR-08-2418.

31. Fitzmaurice C., Allen C., Barber R. M., et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study // JAMA Oncol. – 2017. – № 3. – P. 524–548. DOI: 10.1001/jamaoncol.2016.5688.

32. Glitscher M., Hildt E., Bender D. Hepatitis B und C: Mechanismen der virusinduzierten Leberpathogenese und Tumorentstehung // Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. – 2022. – Vol. 65, № 2. – P. 228-237. DOI: 10.1007/s00103-021-03482-y.

33. Gouttenoire J., Montserret R., Paul D., et al. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production // PLoS Pathog. – 2014. – Vol. 10, № 10. – P. e1004501. DOI: 10.1371/journal.ppat.1004501.

34. Gundamaraju R., Lu W., Manikam R. CHCHD2: The Power House's Potential Prognostic Factor for Cancer? // Front Cell Dev Biol. – 2021. – № 8. – P. 620816. DOI: 10.3389/fcell.2020.620816.

35. Guntaka R. V., Padala M. K. Interaction of hepatitis C viral proteins with cellular oncoproteins in the induction of liver cancer // ISRN Virology. – 2014. – № 3. – P. 1-11. DOI: 10.1155/2014/351407.

36. Heredia-Torres T. G., Rincón-Sánchez A. R., Lozano-Sepúlveda S. A., et al. Unraveling the Molecular Mechanisms Involved in HCV-Induced Carcinogenesis // Viruses. – 2022. – Vol. 14, № 12. – P. 2762. DOI: 10.3390/v14122762.

37. Horie C., Iwahana H., Horie T., et al. Detection of different quasispecies of hepatitis C virus core region in cancerous and noncancerous lesions // Biochem. Biophys. Res. Commun. – 1996. – № 218. – P. 674–681.

38. Hu Z., Muroyama R., Kowatari N., et al. Characteristic mutations in hepatitis C virus core gene related to the occurrence of hepatocellular carcinoma // Cancer Sci. – 2009. – Vol. 100, № 12. – P. 2465-2468. DOI: 10.1111/j.1349-7006.2009.01338.x.

39. Irshad M., Gupta P., Irshad K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection // World J Hepatol. – 2017. – Vol. 9, № 36. – P. 1305-1314. DOI: 10.4254/wjh.v9.i36.1305.

40. Irshad M., Gupta P., Irshad K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection // World J Hepatol. – 2017. – Vol. 9, № 36. – P. 1305-1314. DOI: 10.4254/wjh.v9.i36.1305.

41. Jaspe R. C., Sulbarán Y. F., Sulbarán M. Z., et al. Prevalence of amino acid mutations in hepatitis C virus core and NS5B regions among Venezuelan viral isolates and comparison with worldwide isolates // Virol J. – 2012. – № 9. – P. 214. DOI: 10.1186/1743-422X-9-214.

42. Kang S. M., Park J. Y., Han H. J., et al. Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity // Mol Cells. – 2022. – Vol. 45, № 10. – P. 702-717. DOI: 10.14348/molcells.2022.0018.

43. Kanwal F., Kramer J., Asch S. M., et al. Risk of Hepatocellular Cancer in HCV Patients Treated with Direct-acting Antiviral Agents // Gastroenterology. – 2017. – Vol. 153. – P. 996–1005. DOI: 10.1053/j.gastro.2017.06.012.

44. Kanwal F., Kramer J. R., Ilyas J., et al. HCV genotype 3 is associated with an increased risk of cirrhosis, hepatocellular cancer in a national sample of U.S. Veterans with HCV // Hepatology. – 2014. – Vol. 60. – P. 98–105.

45. Kato N. Genome of human hepatitis C virus (HCV): gene organization, sequence diversity, and variation // Microb Comp Genomics. – 2000. – Vol. 5, N 3. – P. 129-151. DOI: 10.1089/omi.1.2000.5.129.

46. Khaliq S., Jahan S., Pervaiz A. Sequence variability of HCV Core region: important predictors of HCV induced pathogenesis and viral production // Infect Genet Evol. – 2011. – Vol. 11, N 3. – P. 543-556. DOI: 10.1016/j.meegid.2011.01.017.

47. Khera L., Paul C., Kaul R. Hepatitis C Virus E1 protein promotes cell migration and invasion by modulating cellular metastasis suppressor Nm23-H1 // Virology. – 2017. – Vol. 506. – P. 110-120. DOI: 10.1016/j.virol.2017.03.014.

48. Kong L., Li S., Yu X., et al. Hepatitis C virus and its protein NS4B activate the cancer-related STAT3 pathway via the endoplasmic reticulum overload response // Arch Virol. – 2016. – Vol. 161, N 8. – P. 2149-2159. DOI: 10.1007/s00705-016-2892-x.

49. Kouroumalis E., Tsomidis I., Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy // Biomedicines. – 2023. – Vol. 11, N 4. – P. 1166. DOI: 10.3390/biomedicines11041166.

50. Kumthip K., Maneekarn N. The role of HCV proteins on treatment outcomes // Virol J. – 2015. – Vol. 12. – P. 217. DOI: 10.1186/s12985-015-0450-x.

51. Lee A., Liu S., Wang T. Identification of novel human kinases that suppress hepatitis C virus infection // J Viral Hepat. – 2014. – Vol. 21, N 10. – P. 716-726. DOI: 10.1111/jvh.12203.

52. Li H. C., Yang C. H., Lo S. Y. Hepatitis C Viral Replication Complex // Viruses. – 2021. – Vol. 13, N 3. – P. 520. DOI: 10.3390/v13030520.

53. Link T., Iwakuma T. Roles of p53 in extrinsic factor-induced liver carcinogenesis // Hepatoma Res. – 2017. – Vol. 3. – P. 95-104. DOI: 10.20517/2394-5079.2017.07.

54. Lusida M. I., Nagano-Fujii M., Nidom C. A., Soetjipto, Handajani R., et al. Correlation between mutations in the interferon sensitivity-determining region of NS5A protein and viral load of hepatitis C virus subtypes 1b, 1c, and 2a // J Clin Microbiol. – 2001. – Vol. 39, N 11. – P. 3858-3864. DOI: 10.1128/JCM.39.11.3858-3864.2001.

55. Mahmoudvand S., Shokri S., Taherkhani R., Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma // World J Gastroenterol. – 2019. – Vol. 25, N 1. – P. 42-58. DOI: 10.3748/wjg.v25.i1.42.

56. Mani H., Yen J. H., Hsu H. J., et al. Hepatitis C virus core protein: Not just a nucleocapsid building block, but an immunity and inflammation modulator // Tzu Chi Med J. – 2021. – Vol. 34, N 2. – P. 139-147. DOI: 10.4103/tcmj.tcmj_97_21.

57. Miura M., Maekawa S., Takano S., et al. Deep-sequencing analysis of the association between the quasispecies nature of the hepatitis C virus core region and disease progression // J Virol. – 2013. – Vol. 87, N 23. – P. 12541-12551. DOI: 10.1128/JVI.00826-13.

58. Moreira J. P., Malta F. de M., Diniz M. A., et al. Interferon lambda and hepatitis C virus core protein polymorphisms associated with liver cancer // Virology. – 2016. – Vol. 493. – P. 136-141. DOI: 10.1016/j.virol.2016.03.008.

59. Nakamoto S., Kanda T., Wu S., et al. Hepatitis C virus NS5A inhibitors and drug resistance mutations // World J Gastroenterol. – 2014. – Vol. 20, N 11. – P. 2902-2912. DOI: 10.3748/wjg.v20.i11.2902.

60. Ogata F., Akuta N., Kobayashi M., et al. Amino acid substitutions in the hepatitis C virus core region predict hepatocarcinogenesis following eradication of HCV RNA by all-oral direct-acting antiviral regimens // J Med Virol. – 2018. – Vol. 90, N 6. – P. 1087-1093. DOI: 10.1002/jmv.25047.

61. Otsuka M., Kato N., Taniguchi H., et al. Hepatitis C virus core protein inhibits apoptosis via enhanced Bcl-xL expression // Virology. – 2002. – Vol. 296, N 1. – P. 84-93. DOI: 10.1006/viro.2002.1371.

62. .Paolucci S., Fiorina L., Mariani B., et al. Naturally occurring resistance mutations to inhibitors of HCV NS5A region and NS5B polymerase in DAA treatment-naïve patients // Virol J. – 2013. – Vol. 10. – P. 355. DOI: 10.1186/1743-422X-10-355.

63. Paul D., Madan V., Ramirez O., et al. Glycine Zipper Motifs in Hepatitis C Virus Nonstructural Protein 4B Are Required for the Establishment of Viral Replication Organelles // J Virol. – 2018. – Vol. 92, N 4. – P. e01890-17. DOI: 10.1128/JVI.01890-17.

64. Pérez, P.S., Di Lello, F.A., Mullen, E.G., et al. Compartmentalization of hepatitis C virus variants in patients with hepatocellular carcinoma // Mol Carcinog. – 2017- Vol. 56, N 2. – P. 371-380. doi:10.1002/mc.22500.

65. Pillaiyar T., Namasivayam V., Manickam M. Macrocyclic Hepatitis C Virus NS3/4A Protease Inhibitors: An Overview of Medicinal Chemistry // Curr Med Chem. – 2016. – Vol. 23, N 29. – P. 3404-3447. doi:10.2174/0929867323666160510122525.

66. Sato, Y., Kato, J., Takimoto, R., at al. Hepatitis C virus core protein promotes proliferation of human hepatoma cells through enhancement of transforming growth factor alpha expression via activation of nuclear factor-kappa B // Gut. – 2006. – Vol. 55, N 12. – P. 1801-1808. doi:10.1136/gut.2005.070417.

67. Shenge J.A., Odaibo G.N., Olaleye D.O. Phylogenetic analysis of hepatitis C virus among HIV/HCV co-infected patients in Nigeria // PLoS One. – 2019. – Vol. 14, N 2. – e0210724. doi:10.1371/journal.pone.0210724.

68. Shih C.M., Chen C.M., Chen S.Y., Lee Y.H. Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation // J Virol. – 1995. – Vol. 69, N 2. – P.1160-1171. doi:10.1128/JVI.69.2.1160-1171.1995.

69. Singal A.G., El-Serag H.B. Hepatocellular Carcinoma from Epidemiology to Prevention: Translating Knowledge into Practice // Clin. Gastroenterol.Hepatol. – 2015. – N 13. – P. 2140–2151. doi: 10.1016/j.cgh.2015.08.014.

70. Sobesky, R., Feray, C., Rimlinger, F., et al. Distinct hepatitis C virus core and F protein quasispecies in tumoral and nontumoral hepatocytes isolated via microdissection // Hepatology. – 2007. – Vol. 46, N 6. – P. 1704-1712. doi:10.1002/hep.21898.

71. Song, R., Yang, B., Gao, X., et al. Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma // Mol Med Rep. – 2015. – Vol. 11, N 6. P. 4053-4062. doi:10.3892/mmr.2015.3256.

72. Sukowati C.H., El-Khobar K.E., Ie S.I., et al. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma // World J Gastroenterol. – 2016. – Vol. 22, N 4. – P. 1497-1512. doi:10.3748/wjg.v22.i4.1497.

73. Tan Y., Li Y. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1 // Biochem Biophys Res Commun. -2015. – Vol. 466, N 3. P. 592-598. doi:10.1016/j.bbrc.2015.09.091.

74. Tanaka M., Nagano-Fujii M., Deng L., et al. Single-point mutations of hepatitis C virus NS3 that impair p53 interaction and anti-apoptotic activity of NS3 // Biochem Biophys Res Commun. – 2006. – Vol. 340, N 3. – P. 792-799. doi:10.1016/j.bbrc.2005.12.076.

75. Torrents de la Peña, A., Sliepen, K., Eshun-Wilson, L., et al. Structure of the hepatitis C virus E1E2 glycoprotein complex // Science. – 2022. – Vol. 378, N 6617. – P. 263-269. doi:10.1126/science.abn9884.

76. Valenti L., Pulixi E., La Spina S. IL28B, HCV core mutations, and hepatocellular carcinoma: does host genetic make-up shape viral evolution in response to immunity? // Hepatol Int. – 2012. – Vol. 6, N 1. P. 356-359. doi:10.1007/s12072-011-9327-2.

77. Vallet, S., Gouriou, S., Nkontchou, G., et al. Is hepatitis C virus NS3 protease quasispecies heterogeneity predictive of progression from cirrhosis to hepatocellular carcinoma? // J Viral Hepat. – 2007. – Vol. 14, N 2. P. 96-106. doi:10.1111/j.1365-2893.2006.00773.x.

78. van der Meer, A.J., Veldt, B.J., Feld, J.J., et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis // JAMA. – 2012. – Vol. 308, N 24. – P. 2584-2593. doi:10.1001/jama.2012.144878.

79. Waggoner S.N., Hall C.H., Hahn Y.S. HCV core protein interaction with gC1q receptor inhibits Th1 differentiation of CD4+ T cells via suppression of dendritic cell IL-12 production // J Leukoc Biol. – 2007. – Vol. 82, N 6. – P. 1407-1419. doi:10.1189/jlb.0507268.

80. Wandrer F., Han B., Liebig S., et al. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection // Aliment. Pharmacol.Ther. – 2018. – N 48. – P. 270–280.

81. Wong M.T, Chen S.S. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection // Cell Mol Immunol. – 2016. – Vol. 13, N 1. – P. 11-35. doi:10.1038/cmi.2014.127.

82. Wu, S., Yuan, H., Fan, H., et al. Evolutionary characteristics and immune mutation of hepatitis C virus genotype 1b among intravenous drug users in mainland, China // J Viral Hepat. – 2022. – Vol. 29, N 3. – P. 209-217. doi:10.1111/jvh.13647.

83. Xu L., Xu Y., Zhang F., et al. Immunological pathways in viral hepatitis-induced hepato-cellular carcinoma // Zhejiang Da Xue Xue Bao Yi Xue Ban. – 2024. – Vol. 53, N 1. – P. 64-72. doi:10.3724/zdxbyxb-2023-0481.

84. Zhang, X., Ryu, S.H., Xu, Y., et al. The Core/E1 domain of hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma // J Clin Virol. – 2011. – Vol. 52, N 4. – P. 333-338. doi:10.1016/j.jcv.2011.08.022.

85. Zheng F., Li N., Xu Y., et al. Adaptive mutations promote hepatitis C virus assembly by accelerating core translocation to the endoplasmic reticulum // J Biol Chem. – 2021. – N 296. 100018. doi:10.1074/jbc.RA120.016010.


Рецензия

Для цитирования:


Базыкина Е.А., Троценко О.Е. ОЦЕНКА ВЛИЯНИЯ ПОЛИМОРФИЗМОВ ГЕНОМА ВИРУСА ГЕПАТИТА С НА ФОРМИРОВАНИЕ ГЕПАТОЦЕЛЛЮЛЯРНОЙ КАРЦИНОМЫ (ОБЗОР ЛИТЕРАТУРЫ). Дальневосточный журнал инфекционной патологии. 2025;(49):16-25. https://doi.org/10.62963/2073-2899-2025-49-16-25

For citation:


Bazykina E.A., Trotsenko O.E. INFLUENCE OF HEPATITIS C VIRUS POLYMORPHISMS ON HEPATOCELLULAR CARCINOMA EMERGENCE (REVIEW). Far Eastern Journal of Infectious Pathology. 2025;(49):16-25. (In Russ.) https://doi.org/10.62963/2073-2899-2025-49-16-25

Просмотров: 34


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-2899 (Print)