INFLUENCE OF HEPATITIS C VIRUS POLYMORPHISMS ON HEPATOCELLULAR CARCINOMA EMERGENCE (REVIEW)
https://doi.org/10.62963/2073-2899-2025-49-16-25
Abstract
Objective of the review: to evaluate the impact of HCV and HCV polymorphisms on the formation of hepatocellular carcinoma (HCC). Main statements: Development of HCC remains one of the unresolved and complicated issues of modern healthcare system. One of the most significant risk factors of HCC development are hepatotropic viruses, including HCV. It was established that all HCV proteins (Core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B) lead to dysregulation of cell proliferation and immune system function including deterioration of NK- and T-cells responses. Inhibition of pro-apoptotic protein p53 and decrease of interferon production and its antiviral activity as well dysregulation of tumor suppressor proteins network lead to development of tumor in liver tissue. HCV high mutation rate favors emergence of amino acid substitutions in viral proteins and as a result may induce pro-oncogenic processes. Such mutations were detected in E2, NS5A, but most frequently in the core gene of the virus. Conclusion: R70Q/H, L91M and K10Q/R are most common amino acid substitutions of HCV core protein that are spread within viral population and detected in the cohort of patients with diagnosis of HCC. Analysis of existing data on the topic confirmed relevance of continuing the research of HCV polymorphisms that may induce development of HCC as well as evaluation of their prevalence among people suffering from chronic hepatitis C in order to create a diagnostic test-system based on PCR technology which will allow to establish patients that have an increased risk of HCC.
About the Authors
E. A. BazykinaRussian Federation
Khabarovsk
O. E. Trotsenko
Russian Federation
Khabarovsk
References
1. Кичатова В. С., Соболева Н. В., Карлсен А. А., и др. Клинически значимые полиморфизмы в геноме вируса гепатита С среди генотипов вируса, наиболее распространенных на территории Российской Федерации // Актуальные вопросы эпидемиологии, диагностики, лечения и профилактики инфекционных и онкологических заболеваний. Москва, 2019. – C. 29-41.
2. Abdullah M. A. F., McWhirter S. M., Suo Z. Modulation of Kinase Activities In Vitro by Hepatitis C Virus Protease NS3/NS4A Mediated-Cleavage of Key Immune Modulator Kinases // Cells. – 2023. – Vol. 12, № 3. – P. 406. DOI: 10.3390/cells12030406.
3. Akinyemiju T., Abera S., Ahmed M., et al. The Burden of Primary Liver Cancer and Underlying Etiologies from 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015 // JAMA Oncol. – 2017. – №. 3. – P. 1683–1691. DOI: 10.1001/jamaoncol.2017.3055.
4. Akuta N., Suzuki F., Kawamura Y., et al. Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis // Hepatology. – 2007. – Vol. 46, № 5. – P. 1357-1364. DOI: 10.1002/hep.21836.
5. Akuta N., Suzuki F., Seko Y., et al. Complicated relationships of amino acid substitution in hepatitis C virus core region and IL28B genotype influencing hepatocarcinogenesis // Hepatology. – 2012. – Vol. 56, № 6. – P. 2134-2141. DOI: 10.1002/hep.25949.
6. Alam S. S., Nakamura T., Naganuma A., et al. Hepatitis C virus quasispecies in cancerous and noncancerous hepatic lesions: the core protein-encoding region // Acta Med. Okayama. – 2002. – № 56. – Р. 141–147.
7. Amougou-Atsama M., Jean Adrien Atangana P., Noah Noah D., et al. The role of hepatitis C virus genotypes and core mutations in hepatocellular carcinoma in Cameroon // J Viral Hepat. – 2020. – Vol. 27, № 9. – P. 880-885. DOI: 10.1111/jvh.13303.
8. Antonucci G., Girardi E., Cozzi-Lepri A., et al. Role of hepatitis C virus (HCV) viremia and HCV genotype in the immune recovery from highly active antiretroviral therapy in a cohort of antiretroviral-naive HIV-infected individuals // Clin Infect Dis. – 2005. – Vol. 40, № 12. – P. e101-e109. DOI: 10.1086/430445.
9. Anzola M. Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis // J Viral Hepat. – 2004. – Vol. 11, № 5. – P. 383-393. DOI: 10.1111/j.1365-2893.2004.00521.x.
10. Atoom A. M., Taylor N. G., Russell R. S. The elusive function of the hepatitis C virus p7 protein // Virology. – 2014. – Vol. 462. № 463. – P. 377-387. DOI: 10.1016/j.virol.2014.04.018.
11. Araujo O. C., Barros J. J., do Ó K. M., et al. Genetic variability of hepatitis B and C viruses in Brazilian patients with and without hepatocellular carcinoma // J Med Virol. – 2014. – Vol. 86, № 2. – P. 217-223. DOI: 10.1002/jmv.23837.
12. Arora P., Basu A., Schmidt M. L., et al. Nonstructural protein 5B promotes degradation of the NORE1A tumor suppressor to facilitate hepatitis C virus replication // Hepatology. – 2017. – Vol. 65, № 5. – P. 1462-1477. DOI: 10.1002/hep.29049.
13. Bagaglio S., De Mitri M. S., Lodrini S., et al. Mutations in the E2-PePHD region of hepatitis C virus type 1b in patients with hepatocellular carcinoma // J Viral Hepat. – 2005. – Vol. 12, № 3. – P. 243-250. DOI: 10.1111/j.1365-2893.2005.00589.x.
14. Bittar C., Shrivastava S., Bhanja Chowdhury J., et al. Hepatitis C virus NS2 protein inhibits DNA damage pathway by sequestering p53 to the cytoplasm // PLoS One. – 2013. – Vol. 8, № 4. – P. e62581. DOI: 10.1371/journal.pone.0062581.
15. Blight K. J. Charged residues in hepatitis C virus NS4B are critical for multiple NS4B functions in RNA replication // J Virol. – 2011. – Vol. 85, № 16. – P. 8158-8171. DOI: 10.1128/JVI.00858-11.
16. Chang K. C., Wu Y. Y., Hung C. H., t al. Clinical-guide risk prediction of hepatocellular carcinoma development in chronic hepatitis C patients after interferon-based therapy // Br J Cancer. – 2013. – № 109. – P. 2481–2488.
17. Chen S., Harris M. NS5A domain I antagonises PKR to facilitate the assembly of infectious hepatitis C virus particles // PLoS Pathog. – 2023. – Vol. 19, № 2. – P. e1010812. DOI: 10.1371/journal.ppat.1010812.
18. Cho J., Baek W., Yang S., et al. HCV core protein modulates Rb pathway through pRb down-regulation and E2F-1 up-regulation // Biochim Biophys Acta. – 2001. – Vol. 1538, № 1. – P. 59-66. DOI: 10.1016/s0167-4889(00)00137-3.
19. Dabral P., Khera L., Kaul R. Host proteins associated with Hepatitis C virus encoded NS4A // Virusdisease. – 2014. – Vol. 25, № 4. – P. 493-496. DOI: 10.1007/s13337-014-0240-x.
20. Datfar T., Doulberis M., Papaefthymiou A., et al. Viral Hepatitis and Hepatocellular Carcinoma: State of the Art // Pathogens. – 2021. – Vol. 10, № 11. – P. 1366. DOI: 10.3390/pathogens10111366.
21. David N., Yaffe Y., Hagoel L., et al. The interaction between the hepatitis C proteins NS4B and NS5A is involved in viral replication // Virology. – 2015. – № 475. – P. 139-149. DOI: 10.1016/j.virol.2014.10.021.
22. Deng L., Solichin M. R., Adyaksa D. N. M., et al. Cellular Release of Infectious Hepatitis C Virus Particles via Endosomal Pathways // Viruses. – 2023. – Vol. 15, № 12. – P. 2430. DOI: 10.3390/v15122430.
23. Diaz O., Vidalain P. O., Ramière C., et al. What role for cellular metabolism in the control of hepatitis viruses? // Front Immunol. – 2022. – № 13. – P. 1033314. DOI: 10.3389/fimmu.2022.1033314.
24. Einav S., Sklan E. H., Moon H. M., et al. The nucleotide binding motif of hepatitis C virus NS4B can mediate cellular transformation and tumor formation without Ha-ras co-transfection // Hepatology. – 2008. – Vol. 47, № 3. – P. 827-835. DOI: 10.1002/hep.22108.
25. El-Serag H. B., Rudolph K. L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis // Gastroenterology. – 2007. – № 132. – P. 2557–2576. DOI: 10.1053/j.gastro.2007.04.061.
26. El-Shamy A., Eng F. J., Doyle E. H., et al. A cell culture system for distinguishing hepatitis C viruses with and without liver cancer-related mutations in the viral core gene // J Hepatol. – 2015. – Vol. 63, № 6. – P. 1323-1333. DOI: 10.1016/j.jhep.2015.07.024.
27. El-Shamy A., Shindo M., Shoji I., et al. Polymorphisms of the core, NS3, and NS5A proteins of hepatitis C virus genotype 1b associate with development of hepatocellular carcinoma // Hepatology. – 2013. – Vol. 58, № 2. – P. 555-563. DOI: 10.1002/hep.26205.
28. Brahim I., Ezzikouri S., Mtairag el M., et al. Amino acid substitutions in the Hepatitis C virus core region of genotype 1b in Moroccan patients // Infect Genet Evol. – 2013. – № 14. – P. 102-104. DOI: 10.1016/j.meegid.2012.10.006.
29. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma // J Hepatol. – 2018. – № 69. – P. 182–236. DOI: 10.1016/j.jhep.2018.03.019.
30. Fishman S. L., Factor S. H., Balestrieri C., et al. Mutations in the hepatitis C virus core gene are associated with advanced liver disease and hepatocellular carcinoma // Clin Cancer Res. – 2009. – Vol. 15, № 9. – P. 3205-3213. DOI: 10.1158/1078-0432.CCR-08-2418.
31. Fitzmaurice C., Allen C., Barber R. M., et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study // JAMA Oncol. – 2017. – № 3. – P. 524–548. DOI: 10.1001/jamaoncol.2016.5688.
32. Glitscher M., Hildt E., Bender D. Hepatitis B und C: Mechanismen der virusinduzierten Leberpathogenese und Tumorentstehung // Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. – 2022. – Vol. 65, № 2. – P. 228-237. DOI: 10.1007/s00103-021-03482-y.
33. Gouttenoire J., Montserret R., Paul D., et al. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production // PLoS Pathog. – 2014. – Vol. 10, № 10. – P. e1004501. DOI: 10.1371/journal.ppat.1004501.
34. Gundamaraju R., Lu W., Manikam R. CHCHD2: The Power House's Potential Prognostic Factor for Cancer? // Front Cell Dev Biol. – 2021. – № 8. – P. 620816. DOI: 10.3389/fcell.2020.620816.
35. Guntaka R. V., Padala M. K. Interaction of hepatitis C viral proteins with cellular oncoproteins in the induction of liver cancer // ISRN Virology. – 2014. – № 3. – P. 1-11. DOI: 10.1155/2014/351407.
36. Heredia-Torres T. G., Rincón-Sánchez A. R., Lozano-Sepúlveda S. A., et al. Unraveling the Molecular Mechanisms Involved in HCV-Induced Carcinogenesis // Viruses. – 2022. – Vol. 14, № 12. – P. 2762. DOI: 10.3390/v14122762.
37. Horie C., Iwahana H., Horie T., et al. Detection of different quasispecies of hepatitis C virus core region in cancerous and noncancerous lesions // Biochem. Biophys. Res. Commun. – 1996. – № 218. – P. 674–681.
38. Hu Z., Muroyama R., Kowatari N., et al. Characteristic mutations in hepatitis C virus core gene related to the occurrence of hepatocellular carcinoma // Cancer Sci. – 2009. – Vol. 100, № 12. – P. 2465-2468. DOI: 10.1111/j.1349-7006.2009.01338.x.
39. Irshad M., Gupta P., Irshad K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection // World J Hepatol. – 2017. – Vol. 9, № 36. – P. 1305-1314. DOI: 10.4254/wjh.v9.i36.1305.
40. Irshad M., Gupta P., Irshad K. Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection // World J Hepatol. – 2017. – Vol. 9, № 36. – P. 1305-1314. DOI: 10.4254/wjh.v9.i36.1305.
41. Jaspe R. C., Sulbarán Y. F., Sulbarán M. Z., et al. Prevalence of amino acid mutations in hepatitis C virus core and NS5B regions among Venezuelan viral isolates and comparison with worldwide isolates // Virol J. – 2012. – № 9. – P. 214. DOI: 10.1186/1743-422X-9-214.
42. Kang S. M., Park J. Y., Han H. J., et al. Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity // Mol Cells. – 2022. – Vol. 45, № 10. – P. 702-717. DOI: 10.14348/molcells.2022.0018.
43. Kanwal F., Kramer J., Asch S. M., et al. Risk of Hepatocellular Cancer in HCV Patients Treated with Direct-acting Antiviral Agents // Gastroenterology. – 2017. – Vol. 153. – P. 996–1005. DOI: 10.1053/j.gastro.2017.06.012.
44. Kanwal F., Kramer J. R., Ilyas J., et al. HCV genotype 3 is associated with an increased risk of cirrhosis, hepatocellular cancer in a national sample of U.S. Veterans with HCV // Hepatology. – 2014. – Vol. 60. – P. 98–105.
45. Kato N. Genome of human hepatitis C virus (HCV): gene organization, sequence diversity, and variation // Microb Comp Genomics. – 2000. – Vol. 5, N 3. – P. 129-151. DOI: 10.1089/omi.1.2000.5.129.
46. Khaliq S., Jahan S., Pervaiz A. Sequence variability of HCV Core region: important predictors of HCV induced pathogenesis and viral production // Infect Genet Evol. – 2011. – Vol. 11, N 3. – P. 543-556. DOI: 10.1016/j.meegid.2011.01.017.
47. Khera L., Paul C., Kaul R. Hepatitis C Virus E1 protein promotes cell migration and invasion by modulating cellular metastasis suppressor Nm23-H1 // Virology. – 2017. – Vol. 506. – P. 110-120. DOI: 10.1016/j.virol.2017.03.014.
48. Kong L., Li S., Yu X., et al. Hepatitis C virus and its protein NS4B activate the cancer-related STAT3 pathway via the endoplasmic reticulum overload response // Arch Virol. – 2016. – Vol. 161, N 8. – P. 2149-2159. DOI: 10.1007/s00705-016-2892-x.
49. Kouroumalis E., Tsomidis I., Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy // Biomedicines. – 2023. – Vol. 11, N 4. – P. 1166. DOI: 10.3390/biomedicines11041166.
50. Kumthip K., Maneekarn N. The role of HCV proteins on treatment outcomes // Virol J. – 2015. – Vol. 12. – P. 217. DOI: 10.1186/s12985-015-0450-x.
51. Lee A., Liu S., Wang T. Identification of novel human kinases that suppress hepatitis C virus infection // J Viral Hepat. – 2014. – Vol. 21, N 10. – P. 716-726. DOI: 10.1111/jvh.12203.
52. Li H. C., Yang C. H., Lo S. Y. Hepatitis C Viral Replication Complex // Viruses. – 2021. – Vol. 13, N 3. – P. 520. DOI: 10.3390/v13030520.
53. Link T., Iwakuma T. Roles of p53 in extrinsic factor-induced liver carcinogenesis // Hepatoma Res. – 2017. – Vol. 3. – P. 95-104. DOI: 10.20517/2394-5079.2017.07.
54. Lusida M. I., Nagano-Fujii M., Nidom C. A., Soetjipto, Handajani R., et al. Correlation between mutations in the interferon sensitivity-determining region of NS5A protein and viral load of hepatitis C virus subtypes 1b, 1c, and 2a // J Clin Microbiol. – 2001. – Vol. 39, N 11. – P. 3858-3864. DOI: 10.1128/JCM.39.11.3858-3864.2001.
55. Mahmoudvand S., Shokri S., Taherkhani R., Farshadpour F. Hepatitis C virus core protein modulates several signaling pathways involved in hepatocellular carcinoma // World J Gastroenterol. – 2019. – Vol. 25, N 1. – P. 42-58. DOI: 10.3748/wjg.v25.i1.42.
56. Mani H., Yen J. H., Hsu H. J., et al. Hepatitis C virus core protein: Not just a nucleocapsid building block, but an immunity and inflammation modulator // Tzu Chi Med J. – 2021. – Vol. 34, N 2. – P. 139-147. DOI: 10.4103/tcmj.tcmj_97_21.
57. Miura M., Maekawa S., Takano S., et al. Deep-sequencing analysis of the association between the quasispecies nature of the hepatitis C virus core region and disease progression // J Virol. – 2013. – Vol. 87, N 23. – P. 12541-12551. DOI: 10.1128/JVI.00826-13.
58. Moreira J. P., Malta F. de M., Diniz M. A., et al. Interferon lambda and hepatitis C virus core protein polymorphisms associated with liver cancer // Virology. – 2016. – Vol. 493. – P. 136-141. DOI: 10.1016/j.virol.2016.03.008.
59. Nakamoto S., Kanda T., Wu S., et al. Hepatitis C virus NS5A inhibitors and drug resistance mutations // World J Gastroenterol. – 2014. – Vol. 20, N 11. – P. 2902-2912. DOI: 10.3748/wjg.v20.i11.2902.
60. Ogata F., Akuta N., Kobayashi M., et al. Amino acid substitutions in the hepatitis C virus core region predict hepatocarcinogenesis following eradication of HCV RNA by all-oral direct-acting antiviral regimens // J Med Virol. – 2018. – Vol. 90, N 6. – P. 1087-1093. DOI: 10.1002/jmv.25047.
61. Otsuka M., Kato N., Taniguchi H., et al. Hepatitis C virus core protein inhibits apoptosis via enhanced Bcl-xL expression // Virology. – 2002. – Vol. 296, N 1. – P. 84-93. DOI: 10.1006/viro.2002.1371.
62. .Paolucci S., Fiorina L., Mariani B., et al. Naturally occurring resistance mutations to inhibitors of HCV NS5A region and NS5B polymerase in DAA treatment-naïve patients // Virol J. – 2013. – Vol. 10. – P. 355. DOI: 10.1186/1743-422X-10-355.
63. Paul D., Madan V., Ramirez O., et al. Glycine Zipper Motifs in Hepatitis C Virus Nonstructural Protein 4B Are Required for the Establishment of Viral Replication Organelles // J Virol. – 2018. – Vol. 92, N 4. – P. e01890-17. DOI: 10.1128/JVI.01890-17.
64. Pérez, P.S., Di Lello, F.A., Mullen, E.G., et al. Compartmentalization of hepatitis C virus variants in patients with hepatocellular carcinoma // Mol Carcinog. – 2017- Vol. 56, N 2. – P. 371-380. doi:10.1002/mc.22500.
65. Pillaiyar T., Namasivayam V., Manickam M. Macrocyclic Hepatitis C Virus NS3/4A Protease Inhibitors: An Overview of Medicinal Chemistry // Curr Med Chem. – 2016. – Vol. 23, N 29. – P. 3404-3447. doi:10.2174/0929867323666160510122525.
66. Sato, Y., Kato, J., Takimoto, R., at al. Hepatitis C virus core protein promotes proliferation of human hepatoma cells through enhancement of transforming growth factor alpha expression via activation of nuclear factor-kappa B // Gut. – 2006. – Vol. 55, N 12. – P. 1801-1808. doi:10.1136/gut.2005.070417.
67. Shenge J.A., Odaibo G.N., Olaleye D.O. Phylogenetic analysis of hepatitis C virus among HIV/HCV co-infected patients in Nigeria // PLoS One. – 2019. – Vol. 14, N 2. – e0210724. doi:10.1371/journal.pone.0210724.
68. Shih C.M., Chen C.M., Chen S.Y., Lee Y.H. Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation // J Virol. – 1995. – Vol. 69, N 2. – P.1160-1171. doi:10.1128/JVI.69.2.1160-1171.1995.
69. Singal A.G., El-Serag H.B. Hepatocellular Carcinoma from Epidemiology to Prevention: Translating Knowledge into Practice // Clin. Gastroenterol.Hepatol. – 2015. – N 13. – P. 2140–2151. doi: 10.1016/j.cgh.2015.08.014.
70. Sobesky, R., Feray, C., Rimlinger, F., et al. Distinct hepatitis C virus core and F protein quasispecies in tumoral and nontumoral hepatocytes isolated via microdissection // Hepatology. – 2007. – Vol. 46, N 6. – P. 1704-1712. doi:10.1002/hep.21898.
71. Song, R., Yang, B., Gao, X., et al. Cyclic adenosine monophosphate response element-binding protein transcriptionally regulates CHCHD2 associated with the molecular pathogenesis of hepatocellular carcinoma // Mol Med Rep. – 2015. – Vol. 11, N 6. P. 4053-4062. doi:10.3892/mmr.2015.3256.
72. Sukowati C.H., El-Khobar K.E., Ie S.I., et al. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma // World J Gastroenterol. – 2016. – Vol. 22, N 4. – P. 1497-1512. doi:10.3748/wjg.v22.i4.1497.
73. Tan Y., Li Y. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1 // Biochem Biophys Res Commun. -2015. – Vol. 466, N 3. P. 592-598. doi:10.1016/j.bbrc.2015.09.091.
74. Tanaka M., Nagano-Fujii M., Deng L., et al. Single-point mutations of hepatitis C virus NS3 that impair p53 interaction and anti-apoptotic activity of NS3 // Biochem Biophys Res Commun. – 2006. – Vol. 340, N 3. – P. 792-799. doi:10.1016/j.bbrc.2005.12.076.
75. Torrents de la Peña, A., Sliepen, K., Eshun-Wilson, L., et al. Structure of the hepatitis C virus E1E2 glycoprotein complex // Science. – 2022. – Vol. 378, N 6617. – P. 263-269. doi:10.1126/science.abn9884.
76. Valenti L., Pulixi E., La Spina S. IL28B, HCV core mutations, and hepatocellular carcinoma: does host genetic make-up shape viral evolution in response to immunity? // Hepatol Int. – 2012. – Vol. 6, N 1. P. 356-359. doi:10.1007/s12072-011-9327-2.
77. Vallet, S., Gouriou, S., Nkontchou, G., et al. Is hepatitis C virus NS3 protease quasispecies heterogeneity predictive of progression from cirrhosis to hepatocellular carcinoma? // J Viral Hepat. – 2007. – Vol. 14, N 2. P. 96-106. doi:10.1111/j.1365-2893.2006.00773.x.
78. van der Meer, A.J., Veldt, B.J., Feld, J.J., et al. Association between sustained virological response and all-cause mortality among patients with chronic hepatitis C and advanced hepatic fibrosis // JAMA. – 2012. – Vol. 308, N 24. – P. 2584-2593. doi:10.1001/jama.2012.144878.
79. Waggoner S.N., Hall C.H., Hahn Y.S. HCV core protein interaction with gC1q receptor inhibits Th1 differentiation of CD4+ T cells via suppression of dendritic cell IL-12 production // J Leukoc Biol. – 2007. – Vol. 82, N 6. – P. 1407-1419. doi:10.1189/jlb.0507268.
80. Wandrer F., Han B., Liebig S., et al. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection // Aliment. Pharmacol.Ther. – 2018. – N 48. – P. 270–280.
81. Wong M.T, Chen S.S. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection // Cell Mol Immunol. – 2016. – Vol. 13, N 1. – P. 11-35. doi:10.1038/cmi.2014.127.
82. Wu, S., Yuan, H., Fan, H., et al. Evolutionary characteristics and immune mutation of hepatitis C virus genotype 1b among intravenous drug users in mainland, China // J Viral Hepat. – 2022. – Vol. 29, N 3. – P. 209-217. doi:10.1111/jvh.13647.
83. Xu L., Xu Y., Zhang F., et al. Immunological pathways in viral hepatitis-induced hepato-cellular carcinoma // Zhejiang Da Xue Xue Bao Yi Xue Ban. – 2024. – Vol. 53, N 1. – P. 64-72. doi:10.3724/zdxbyxb-2023-0481.
84. Zhang, X., Ryu, S.H., Xu, Y., et al. The Core/E1 domain of hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma // J Clin Virol. – 2011. – Vol. 52, N 4. – P. 333-338. doi:10.1016/j.jcv.2011.08.022.
85. Zheng F., Li N., Xu Y., et al. Adaptive mutations promote hepatitis C virus assembly by accelerating core translocation to the endoplasmic reticulum // J Biol Chem. – 2021. – N 296. 100018. doi:10.1074/jbc.RA120.016010.
Review
For citations:
Bazykina E.A., Trotsenko O.E. INFLUENCE OF HEPATITIS C VIRUS POLYMORPHISMS ON HEPATOCELLULAR CARCINOMA EMERGENCE (REVIEW). Far Eastern Journal of Infectious Pathology. 2025;(49):16-25. (In Russ.) https://doi.org/10.62963/2073-2899-2025-49-16-25




