УДК 616.831.9: 616.98: 578.835.1 Enterovirus-036.22]: 001.891(571)

СПЕЦИФИКА ПРОЯВЛЕНИЙ ЭНТЕРОВИРУСНОЙ ИНФЕКЦИИ В ДАЛЬНЕВОСТОЧНОМ И СИБИР-СКОМ ФЕДЕРАЛЬНЫХ ОКРУГАХ. МОЛЕКУЛЯР-НО-ГЕНЕТИЧЕСКИЕ ОСОБЕННО-СТИ АКТУАЛЬНЫХ ТИПОВ ЭНТЕРОВИРУСОВ

Е.Ю. Сапега¹, Л.В. Бутакова¹, О.Е. Троценко¹, Т.А. Зайцева², О.П. Курганова³, М.Е. Игнатьева⁴, О.А. Фунтусова⁵, П.В. Копылов⁶, А.В. Семенихин⁷, Т.Н. Детковская⁸, Я.Н. Господарик⁹, С.А. Корсунская¹⁰, С.Э. Лапа¹¹, Д.Ф. Савиных¹², С.С. Ханхареев¹³, Т.Г. Романова¹⁴, Д.В. Горяев¹⁵, Л.В. Щучинов¹⁶, Л.К. Салчак¹⁷

¹ФБУН Хабаровский НИИ эпидемиологии и микробиологии Роспотребнадзора, г. Хабаровск, Россия

²Управление Роспотребнадзора по Хабаровскому краю, г. Хабаровск, Россия; ³Управление Роспотребнадзора по Амурской области, г. Благовещенск, Россия:

⁴Управление Роспотребнадзора по Республике Саха (Якутия), г. Якутск, Россия:

⁵Управление Роспотребнадзора по Сахалинской области, г. Южно-Сахалинск, Россия;

⁶Управление Роспотребнадзора по Еврейской автономной области, г. Биробиджан, Россия;

⁷Управление Роспотребнадзора по Чукотскому автономному округу, г. Анадырь, Россия;

⁸Управление Роспотребнадзора по Приморскому краю, г. Владивосток, Россия;

⁹Управление Роспотребнадзора по Камчатскому краю, г. Петропавловск-Камчатский. Россия;

¹⁰Управление Роспотребнадзора по Магаданской области, г. Магадан, Рос-

11 Управление Роспотребнадзора по Забайкальскому краю, г. Чита, Россия;

12 Управление Роспотребнадзора по Иркутской области, г. Иркутск, Россия;

¹³Управление Роспотребнадзора по Республике Бурятия, г. Улан-Уде, Россия;

¹⁴Управление Роспотребнадзора по Республике Хакасия, г. Абакан, Россия;

¹⁵Управление Роспотребнадзора по Красноярскому краю, г. Красноярск, Россия:

¹⁶Управление Роспотребнадзора по Республике Алтай, г. Горно-Алтайск, Россия;

¹⁷Управление Роспотребнадзора по Республике Тыва, г. Кызыл, Россия

Проведен эпидемиологический и молекулярно-генетический анализ энтеровирусной инфекции в субъектах ДФО и СФО в период с 2016 по 2019 гг. Выявлена напряженная эпидемическая ситуация по данному заболеванию в республиках Саха (Якутия) и Алтай, Амурской, Сахалинской и Иркутской областях, обусловленная в том числе и групповой заболеваемостью. Кроме того, за анализируемый период в Красноярском крае, республиках Тыва и Саха (Якутия) установлен существенный рост случаев энтеровирусного менингита. Результаты молекулярно-генетических исследований свидетельствуют о том, что значитель-

ные подъемы заболеваемости ЭВИ в ДФО в 2016 и в 2019 гг., а в СФО в период с 2017 по 2019 гг. были обусловлены преимущественно энтеровирусом Коксаки А-6.

Ключевые слова: энтеровирусная инфекция, эпидемическая ситуация, эпидемиологический надзор, эпидемический процесс, энтеровирусный менингит, эпидемический подъём заболеваемости, молекулярное типирование

SPECIAL NATURE OF ENTEROVIRUS INFECTION IN THE FAR EASTERN AND SIBERIAN FEDERAL DISTRICTS. MOLECULAR-GENETIC PECULIARITIES OF RELEVANT ENTEROVIRUS TYPES

E.Yu. Sapega¹, L.V. Butakova¹, O.E. Trotsenko¹, T.A. Zaitseva², O.P. Kurganova³, M.E. Ignatyeva⁴, O.A. Funtusoava⁵, P.V. Kopilov⁶, A.V. Semenikhin⁷, T.N. Detkovskaya⁸, Ya.N. Gospodarik⁹, S.A. Korsunskaya¹⁰, S.E. Lapa¹¹, D.F. Savinikh¹², S.S. Khankhareev¹³, T.G. Romanova¹⁴, D.V. Goryaev¹⁵, L.V. Shuchinov¹⁶, L.K. Salchak¹⁷

¹FBIS Khabarovsk scientific research institute of epidemiology and microbiology of Rospotrebnadzor (Federal service for surveillance on consumers rights protection and human wellbeing), Khabarovsk, Russia:

- ² Regional Rospotrebnadzor office in the Khabarovsk krai, Khabarovsk, Russia;
- ³ Regional Rospotrebnadzor office in the Amur oblast, Blagoveshchensk, Russia;
- ⁴ Regional Rospotrebnadzor office in the Republic Sakha (Yakutiya), Yakutsk, Russia;
- ⁵ Regional Rospotrebnadzor office in the Sakhalin oblast, Yuzhno-Sakhalinsk, Russia;
- ⁶ Regional Rospotrebnadzor office in the Jewish Autonomous region, Birobidzhan, Russia;
- Regional Rospotrebnadzor office in the Chukotka autonomous region, Anadyr, Russia:
- ⁸ Regional Rospotrebnadzor office in the Primorsky region, Vladivostok, Russia
- ⁹ Regional Rospotrebnadzor office in the Kamchatka krai, Petropavlovsk-Kamchatsky, Russia;
- ¹⁰ Regional Rospotrebnadzor office in the Magadan oblast, Magadan, Russia;
- 11 Regional Rospotrebnadzor office in the Zabailalsky krai, Chita, Russia;
- Regional Rospotrebnadzor office in the Irkutsk oblast, Irkutsk, Russia;
- ¹³ Regional Rospotrebnadzor office in the Republic Buryatia, Ulan-Ude, Russia;
- ¹⁴ Regional Rospotrebnadzor office in the Republic Khakassia, Abakan, Russia
- ¹⁵Regional Rospotrebnadzor office in the Krasnoyarsk krai, Krasnoyarsk, Russia;
- ¹⁶ Regional Rospotrebnadzor office in the Altai Republic, Gorno-Altaisk, Russia
- ¹⁷ Regional Rospotrebnadzor office in the Tyva Republic, Kyzyl, Russia

Epidemiological and molecular-genetic analysis of enterovirus infection was conducted in constituent entities of the Far Eastern and Siberian Federal Districts (FEFD and SFD) during years 2016-2019. Challenging epidemic situation concerning specified disease conditioned among other things by disease clusters was revealed in the Altai and Sakha (Yakutia) Republics, Amur, Sakhalin and Irkutsk regions. In addition, a substantial increase in cases of meningitis caused by enterovirus was detected in the Krasnoyarsk krai, Tuva and Sakha (Yakutia) Republics during the analyzed period of time. Results of molecular-genetic research evidence that substantial increase in incidence during years 2017-2019 were caused mostly by Coxsackie A-6.

Key words: enterovirus infection, epidemic situation, epidemiological surveillance, epidemic process, meningitis caused by enterovirus, epidemic increase in incidence, molecular typing

Ежегодно на территории Российской Федерации в летне-осенний период регистрируется подъем заболеваемости энтеровирусной инфекцией (ЭВИ), при этом в отдельных субъектах РФ показатели заболеваемости превышают среднероссийские. В то же время отмечается неравномерное распределение числа больных по субъектам, что определяется многими особенностями, присущими для каждой территории (плотность населения, удаленность от крупных населенных пунктов, перепады среднесуточных температур, влажность), а также условиями, способствующими возможному появлению и циркуляции новых для территорий типов энтеровирусов (активная миграция населения) [4].

ЭВИ отличается разнообразием симптомов (гастродуоденит, энтерит, гриппоподобное заболевание, экзантема, герпангина, серозный менингит, менингоэнцефалит и т.д.), при этом все же преобладает бессимптомное носительство, что способствует распространению вируса среди неиммунного населения и возникновению вспышечных очагов [2]. В то же время повсеместное распространение энтеровирусов подтверждает необходимость постоянного эпидемиологического и молекулярногенетического мониторинга за данным инфекционным заболеванием. Активное внедрение высокотехнологичных молекулярно-генетических методов исследования в этиологическую диагностику ЭВИ позволяет более детально изучить современную эпидемическую ситуацию по ЭВИ в субъектах Даль-

невосточного и Сибирского федеральных округов (ДФО и СФО), что и определило направление данной работы.

Цель исследования: изучить эпидемический процесс энтеровирусной инфекции (ЭВИ) в субъектах Дальневосточного и Сибирского федеральных округов в 2016-2020 гг., выявить циркулирующие типы энтеровирусов, используя эпидемиологический анализ, молекулярно-генетическое типирование энтеровирусов и филогенетический анализ наиболее актуальных типов.

Материалы и методы

Анализ заболеваемости энтеровирусной инфекцией в субъектах Дальневосточного и Сибирского федеральных округов РФ в период с 2016 по 2020 гг. проведен с использованием данных государственных статистических форм наблюдения №№ 1, 2 «Сведения об инфекционных и паразитарных заболеваниях», карт эпидемиологического расследования групповых случаев заболеваемости ЭВИ, отчетных материалов Управлений Роспотребнадзора и вирусологических лабораторий Центров гигиены и эпидемиологии в субъектах ДФО и СФО.

С целью выявления РНК энтеровирусов с последующим типированием материал поступал из Центров гигиены и эпидемиологии субъектов ДФО и СФО в лабораторию ФБУН Хабаровский НИИ эпидемиологии и микробиологии Роспотребнадзора. В период с 2016 по 2020 гг. исследовано 3076 проб клинического материала от 2764 лиц с подозрением на ЭВИ и 269 проб из объектов окружающей среды.

РНК энтеровирусов выявляли методом ОТ-ПЦР с использованием тест-системы «Ампли-Сенс® Enterovirus-FL» (ЦНИИЭ, Москва). Амплификацию участка VP1 генома энтеровирусов осуществляли в два этапа: с парами праймеров SO224 (5'-GCIATGYTIGGIACICAYRT-3') /SO222 (5'-CICCIGGIGGIAYRWACAT-3') для первого раунда и AN89 (5'-CCAGCACTGACAGCAGYNGARAYNGG-3') /AN88 (5'-TACTGGACCACCTGGNGGNAYRWACAT-3') для второго раунда [6]. Полученные продукты ПЦР определяли методом электрофореза в агарозном геле, дальнейшую их очистку проводили с помощью набора для элюции ДНК из агарозного геля производства Диа-М, согласно рекомендациям производителя.

Нуклеотидные последовательности были получены с помощью автоматического генетического анализатора Applied Biosystems 3500 с использованием набора реагентов BigDye Terminator v.3.1 Cycle Sequencing Kit и праймеров AN232 (5'- CCAGCACTGACAGCA -3') и AN233 (5'-TACTGGACCACCTGG -3') [6]. Для выравнивания полученных нуклеотидных последовательностей использовалась программа BioEdit v.7.1.9. Для идентификации типа энтеровируса полученные нуклеотидные последовательности анализировались в программе BLAST (http://www.ncbi.nlm.iv.gov./BLAST).

Реконструкцию филогенетических взаимоотношений осуществляли с использованием методов байесовского моделирования, которые позволяют проводить датирование эволюционных событий с достоверностью 95,0%. Статистическую обработку данных выполняли при помощи программного обеспечения BEAST v.1.8.4, где автоматически рассчитывается байесовский доверительный интервал (БДИ). Филогенетические деревья были аннотированы в TreeAnnotator v.1.8.4, первые 10% были отброшены при построении Maximum Clade Credibility (МСС) дерева. Для визуализации использовалась программа FigTree v1.4.3. [5,7].

Для статистической обработки полученных результатов применены пакеты прикладных программ Excel 2013 (Microsoft Office 2013) с использованием параметрических методов вариационной статистики [1,3].

Результаты и обсуждение

В целях совершенствования эпидемиологического надзора за ЭВИ и повышения качества ее диагностики в декабре 2016 г. приказом руководителя Роспотребнадзора А. Ю. Поповой № 1236 «О совершенствовании эпидемиологического надзора за ЭВИ» за Дальневосточным региональным научно-методическим центром по изучению энтеровирусных инфекций (далее — ДВРНМ Центр ЭВИ) были закреплены субъекты Дальневосточного федерального округа и ряд субъектов Сибирского федерального округа Российской Федерации (республики Алтай, Тыва, Хакасия, Красноярский край, Иркутская область).

Многолетняя динамика заболеваемости ЭВИ имеет волнообразный характер. Наибольшее число случаев ЭВИ в ДФО было отмечено в 2006 г., а в СФО в 2019 г. (рис.1.).

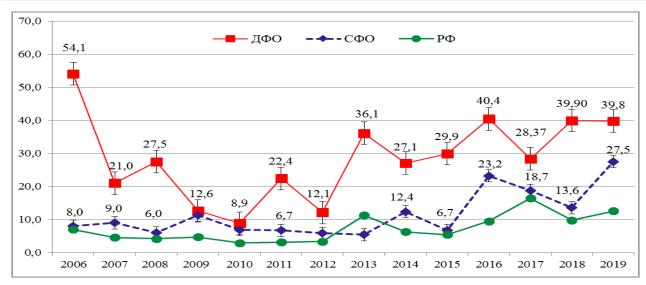


Рис. 1. Заболеваемость ЭВИ в ДФО и СФО в сравнении с показателями в РФ в 2006-2019 гг.

В период с 2016 по 2020 гг. случаи ЭВИ регистрировались во всех субъектах ДФО и СФО РФ, курируемых Центром. При этом, ежегодно в Республике Саха (Якутия), Хабаровском крае, Сахалинской, Магаданской и Еврейской автономной областях показатели заболеваемости были больше в 1,5 раза, чем в среднем по Российской Федерации (таблица 1). В других субъектах, курируемых Центром, превышение среднефедеральных показателей было отмечено в отдельные годы.

Таблица 1. Заболеваемость ЭВИ в субъектах ДФО и СФО РФ в период с 2016 по 2020 гг.

	Показатели заболеваемости ЭВИ									
	2016		20	017	20	18 г.	2019 г.		8 мес.2020г.	
	абс	на 100 тыс.	абс	на 100 тыс.	абс	на 100 тыс.	абс	на 100 тыс.	абс	на 100 тыс.
Республика Саха (Якутия)	280	29,3	315	32,8	180	18,7	273	28,2	16	1,6
Приморский край	197	10,8	64	3,4	144	7,5	528	28,7	2	0,1
Хабаровский край	1065	79,58	481	36,04	785	58,6	825	62,1	24	1,8
Амурская обл.	300	37,2	119	14,8	167	20,8	342	43,1	0	0
Сахалинская обл.	503	103	504	103,3	1085	222,6	618	126,2	27	5,4
Еврейская авт. обл. (EAO)	81	48,1	83	49,6	45	27,8	94	58,7	3	1,9
Камчатский край	28	8,85	73	23,2	17	5,4	70	22,2	0	0
Магаданская обл.	47	31,74	61	41,9	42	28,8	35	24,8	0	0
Чукотский АО (ЧАО)	0	0	51	101,7	5	10,0	1	2,03	0	0
Иркутская область	318	13,2	550	22,8	404	16,8	532	22,1	13	0,5
Забайкальский край	98	9	182	16,8	267	24,7	283	26,4	0	0
Республика Бурятия	283	28,7	288	29,3	130	13,2	185	18,8	7	0,7
Красноярский край	562	19,6	417	14,6	213	7,4	450	16,6	28	1,1
Республика Алтай	4	1,87	39	18,1	20	9,3	104	47,8	0	0
Республика Хакасия	128	23,9	32	6,0	43	8,0	37	6,9	0	0
Республика Тыва	63	20,1	70	22,2	62	19,6	564	171,4	0	0

Дальневосточный Журнал Инфекционной Патологии ● №39 – 2020 г.

Российская	13871	0.5	23959	16.4	14441	0.0	18504	12.6	
Федерация	13071	9,5	23939	10,4	14441	9,0	10304	12,0	

В 2020 г. случаи ЭВИ регистрировались лишь в 8 из 16 курируемых субъектов ДФО и СФО РФ (республики Саха (Якутия) и Бурятия, Хабаровский, Приморский и Красноярский края, Сахалинская, Еврейская автономная и Иркутская области). При этом, по сравнению с 2019 годом, в этих территориях наблюдалось уменьшение числа больных ЭВИ в среднем на 96,4% (95%ДИ: 95,8-97,0), а очагов групповой заболеваемости ЭВИ не было зарегистрировано. Это связано со сложившейся в текущем году неблагополучной эпидемической ситуацией, обусловленной появлением и быстрым распространением среди населения нового коронавируса SARS-CoV-2, вызывающего заболевание COVID-19. Введение строгих ограничительных мер, направленных на предотвращение пандемии, способствовали снижению среди населения числа инфекционных заболеваний другой этиологии, в том числе и ЭВИ.

Ежегодное превышение среднемноголетних показателей в 1,5 раза и более было отмечено в 5 из 16 курируемых Центром субъектов ДФО и СФО (республики Саха (Якутия) и Алтай, Амурская, Сахалинская и Иркутская области), что свидетельствовало о нестабильной эпидемической обстановке по ЭВИ в указанных регионах (таблица 2). В 2019 году ухудшение эпидемической ситуации по ЭВИ наблюдалось в Республике Тыва, в Забайкальском крае, в Камчатском крае, в Приморском крае и ЕАО.

Таблица 2. Среднемноголетние показатели заболеваемости ЭВИ в субъектах ДФО и СФО в период с 2016 по 2019 гг.

	Показатели заболеваемости ЭВИ (на 100 тыс. населения)									
	Средне- много- летний	2016	Средне- много- летний	2017	Средне- много- летний	2018	Средне- много- летний	2019		
Республика Саха (Якутия)	5,2	29,3	7,6	32,8	10,9	18,7	12,8	28,2		
Приморский край	9,3	10,8	7,1	3,4	6,8	7,5	3,9	28,7		
Хабаровский край	76,1	79,6	66,9	36	63,0	58,9	63,3	62,1		
Амурская обл.	5,9	37,2	9,7	14,8	10,9	20,8	13,0	43,1		
Сахалинская обл.	32,02	103	35,0	103,3	43,3	222,6	64,4	126,2		
EAO	33,4	48,1	36,0	49,6	38,3	27,8	35,7	58,7		
Камчатский край	6,8	8,9	7,7	23,2	10,0	5,4	7,1	22,2		
Магаданская обл.	8,2	31,7	11,3	41,9	15,2	28,8	17,5	24,8		
ЧАО	0	0		101,7	17,0	10	18,6	2,03		
Забайкальский край	9,04	9	8,1	16,8	7,9	24,7	9,2	26,4		
Республика Бурятия	10,5	28,7	13,4	29,3	12,6	13,2	13,8	18,8		
Иркутская область	9,03	13,2	7,9	22,8	9,3	16,8	10,4	22,1		
Красноярский край	8,3	28,9	10,9	14,6	12,3	7,8	12,3	16,6		
Республика Алтай	0,9	1,87	1,1	18,1	2,9	9,3	3,8	47,8		
Республика Хакасия	3,67	23,9	5,9	6	6,4	8	7,2	6,9		
Республика Тыва	1,9	93,4	11,2	22,2	13,3	19,6	15,1	171, 4		

Случаи энтеровирусного менингита на протяжении 2016-2019 гг. постоянно регистрировались в 12 из 16 субъектов ДФО и СФО РФ: в республиках Саха (Якутия), Бурятия, Хакасия, Алтай и Тыва, Хабаровском, Приморском, Забайкальском и Красноярском краях, Амурской, Сахалинской, Еврейской автономной и Иркутской областях (таблица 3).

Таблица 3.

Заболеваемость ЭВМ в субъектах ДФО и СФО РФ в период с 2016 по 2020 гг

Guoonebuei			_			риод с 2016 по 2020 гг.				
	2016		2017		2018 г.		2019 г.		8 мес.2020г.	
	абс	100 тыс	абс	100 тыс	абс	100 тыс	абс	100 тыс	абс	100 тыс
Республика Саха (Якутия)	67	7	17	1,8	13	1,3	22	2,3	3	0,3
Приморский край	28	1,54	8	0,4	10	0,5	12	0,6	0	0
Хабаровский край	336	25,11	49	3,7	220	16,5	144	10,8	13	2,1
Амурская область	40	4,96	8	1	3	0,4	4	0,5	0	0
Сахалинская область	9	1,8	16	3,3	209	42,9	33	6,7	0	0
EAO	1	0,6	1	0,6	1	0,6	3	1,9	0	0
Камчатский край	0	0	5	1,6	0	0	0	0	0	0
Магаданская обл.	0	0	0	0	0	0	0	0	0	0
Чукотский АО	0	0	0	0	0	0	0	0	0	0
Забайкальский край	3	0,3	3	0,3	4	0,4	2	0,2	0	0
Республика Бурятия	19	1,9	35	3,6	26	2,6	26	2,6	0	0
Иркутская область	38	1,6	38	1,6	34	1,4	33	1,4	1	0,04
Красноярский край	435	15,2	219	7,7	96	3,5	177	6,5	4	0,2
Республика Алтай	2	0,9	7	3,2	1	0,4	0	0	0	0
Республика Хакасия	5	0,9	3	0,5	0	0	4	0,7	0	0
Республика Тыва	19	6,1	7	2,2	3	0,9	63	19,2	0	0

При анализе распространенности клинических форм ЭВИ по субъектам ДФО и СФО установлено, что менингит преобладал в 2016 г. в Хабаровском и Красноярском краях, а с 2017 по 2019 гг. – только в Красноярском крае. В остальных территориях в анализируемый период наиболее часто регистрировались герпангина и экзантема.

Следует отметить, что одной из важных эпидемиологических особенностей энтеровирусной инфекции является преимущественное поражение детей дошкольного и школьного возрастов. В 2016-2020 гг. в возрастной структуре в ДФО и СФО преобладали дети 3-6 лет, удельный вес данной возрастной группы составил 39,6% и 34,8%, соответственно.

Таким образом, в период с 2016 по 2019 гг. напряженная эпидемическая ситуация по ЭВИ сохранялась в Республиках Саха (Якутия) и Алтай, Амурской, Сахалинской и Иркутской областях, при этом показатели заболеваемости были в 1,5 раза выше среднемноголетних. В 2020 г. в курируемых субъектах ДФО и СФО наблюдалось значительное снижение заболеваемости ЭВИ по сравнению с предыдущими годами, вероятнее всего обусловленное введением строгих ограничительных мер, направленных на предотвращение распространения среди населения РФ нового коронавируса SARS-CoV-2.

Следует отметить, что причиной осложнения эпидемической ситуации в отношении ЭВИ является появление «нового», ранее не встречавшегося или давно не циркулировавшего в регионе, типа энтеровируса. Результаты вирусологических и молекулярно-генетических исследований, проведенных в субъектах ДФО и СФО РФ с 2016 по 2019 гг., свидетельствуют о том, что заболеваемость ЭВИ в отдельные годы была обусловлена преимущественно энтеровирусом Коксаки А-6. Значительный подъем заболеваемости ЭВИ, вызванный данным вирусом, наблюдался в ДФО в 2016 и в 2019 гг., а в СФО – в период с 2017 по 2019 гг. В то же время в 2017 и 2018 гг. в ДФО отмечена активизация других энтеровирусов – Коксаки А-10 и ЕСНО-6. В 2019 г. на рост заболеваемости ЭВИ в ряде территорий повлияло появление ранее не циркулировавших в них типов энтеровирусов: Коксаки А-6 – в Приморском крае и Республике Алтай, ЕСНО-6 – в Республике Тыва, Коксаки В-3 – в Камчатском крае.

Для молекулярно-генетического исследования в лабораторию Дальневосточного регионального научно-методического центра по изучению ЭВИ в период с 2016 по 2020 гг. биологический материал поступал со всех территорий ДФО и СФО, курируемых Центром. Всего в анализируемый период получено 1560 нуклеотидных последовательностей энтеровирусов (ЭВ) 42 типов. При этом в циркуляции на территории ДФО и СФО преобладали энтеровирусы вида А, на втором месте по частоте выявления находились энтеровирусы вида В, а энтеровирусы вида С составили 3,7% (рис. 2).

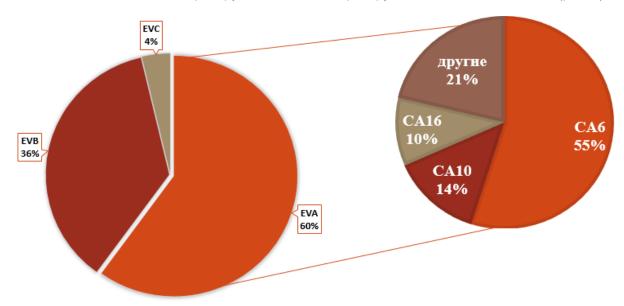


Рис.2. Результаты молекулярно-генетического мониторинга энтеровирусной инфекции в субъектах Дальневосточного и Сибирского федеральных округов

Доминирующим типом энтеровирусов в 2016 г. и в 2018-2019 гг. явился Коксаки А-6, на 2 месте по частоте выявления стоит Коксаки А10, за счет активной его циркуляции в Хабаровском крае и Сахалинской области в 2017 г. (рис. 3). В 2019 г. циркуляция Коксаки А-6 выявлена в 11 из 16 курируемых ДВРНМ Центром ЭВИ, при этом в трех территориях (Хабаровский, Приморский и Красноярский края) были зарегистрированы очаги групповой заболеваемости, обусловленные этим вирусом. Кроме того, подъем заболеваемости ЭВИ в 2019 г. в Приморском крае также был вызван активизацией энтеровируса Коксаки А-6.

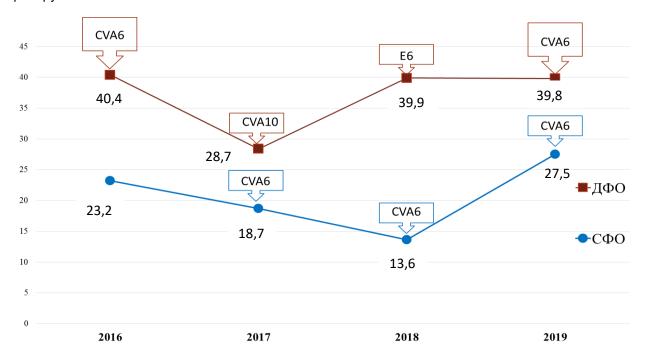


Рис. 3. Показатели заболеваемости ЭВИ и доминирующие типы энтеровирусов в Дальневосточном и Сибирском федеральных округах в период с 2016 по 2019 гг.

Проведенный нами филогенетический анализ показал принадлежность всех идентифицированных в ДФО и СФО штаммов Коксаки А-6 к единому генотипу D, широко распространённому в мире. При этом, на филограмме штаммы сформировали 3 группы, процент дивергенции составил от 8 до 15%.

Штаммы Коксаки А-6 имели широкое распространение, при этом возможными предшественниками для первой группы стали вирусы, ранее циркулировавшие в западной части Российской Федерации и ряде стран Европы, а для второй и третьей группы – в Китае, Таиланде и Вьетнаме (рис.4). Кроме этого, сходство штаммов первой и второй генетических групп со штаммами Коксаки А-6, выделенными в Турции в 2017 г., допускает возможность завоза ЭВИ и из этой страны.

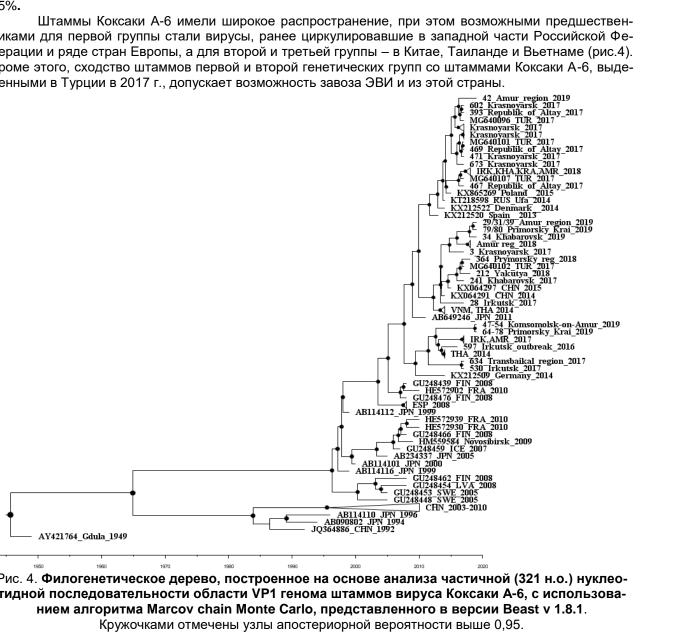


Рис. 4. Филогенетическое дерево, построенное на основе анализа частичной (321 н.о.) нуклеотидной последовательности области VP1 генома штаммов вируса Коксаки А-6, с использованием алгоритма Marcov chain Monte Carlo, представленного в версии Beast v 1.8.1. Кружочками отмечены узлы апостериорной вероятности выше 0,95.

В связи с резким подъемом заболеваемости ЭВИ в Республике Тыва в 2019 г., обусловленном активацией циркуляции энтеровируса ЕСНО-6, был проведен более подробный филогенетический анализ полученных нуклеотидных последовательностей ЕСНО-6. Установлено, что штаммы ЕСНО-6, выделенные в 2019 г. в Республике Тыва, образовали единую группу совместно с хабаровскими вирусами ЕСНО-6, полученными из клинического материала в 2018 г. и из проб сточной воды в 2019 г., что косвенно может свидетельствовать о не менее чем двухлетней циркуляции данного энтеровируса среди населения г. Хабаровска (рис.5). Кроме того, большинство российских штаммов данной группы имели близкое родство и образовали монофилетический кластер с вирусом, выделенным в Великобритании из сточной воды в 2017 г. При этом установлено, что их ближайший предок существовал в 2016 году (95% ДИ: 2012-2018), а на территории Российской Федерации штаммы этой группы ЕСНО-6 до 2018 г. не выявлялись. Распространение вируса ЕСНО-6 представленного геноварианта по территориям РФ, в том числе завоз в Хабаровский край и Республику Тыва, предположительно произошли с 2018 года.

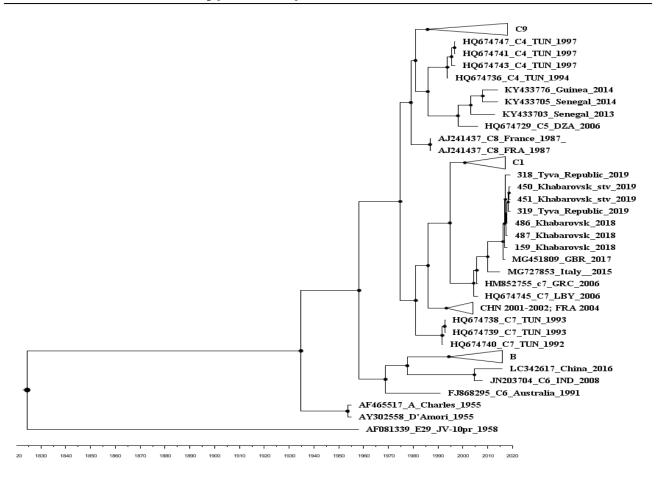


Рис. 5. Филогенетическое дерево, построенное на основе анализа частичной (315 н.о.) нуклеотидной последовательности области VP1 генома штаммов вируса ECHO-6, с использованием алгоритма Marcov chain Monte Carlo, представленного в версии Beast v 1.8.1.

Кружочками отмечены узлы апостериорной вероятности выше 0,95.

Исходя из выше изложенного, основными проявлениями энтеровирусной инфекции в регионах ДФО и СФО, охваченных данным наблюдением, являются: превышение среднероссийского уровня заболеваемости с тенденцией роста ежегодных показателей, обусловленной большей настороженностью медицинского персонала к лицам с признаками инфекционных заболеваний, повышением качества лабораторного подтверждения случаев ЭВИ, а также интенсификацией миграционных процессов; явное преобладание в клинической картине основных трех форм ЭВИ в виде герпангины, экзантемы и энтеровирусного менингита; доминирование среди заболевших лиц детей в возрасте 3-6 лет; преобладание энтеровирусов вида А пейзаже циркулирующих в ДФО и СФО энтеровирусов; регистрация групповых и завозных случаев заболеваний.

Результаты исследования продемонстрировали важность такого компонента эпидемиологического надзора за ЭВИ, как молекулярно-генетический мониторинг циркуляции энтеровирусов, позволяющий осуществлять генотипирование и выявлять возможные эпидемиологические связи случаев заболеваний.

Проведенный филогенетический анализ типированных нами штаммов энтеровирусов позволяет сделать вывод об их широкой циркуляции на территории Российской Федерации, а также активной трансграничной импортации из других стран. Появление не свойственных для изучаемой местности штаммов энтеровирусов предполагает завозы возбудителей из других регионов и может являться своеобразным «индикатором» предстоящих изменений в интенсивности течения эпидемического процесса ЭВИ. Выявление связи между особенностями проявления эпидемического процесса ЭВИ и широкого распространения эпидемически значимых штаммов ЭВ требует дальнейшего изучения в субъектах ДФО и СФО, что позволит расширить имеющийся арсенал объективных показателей прогнозирования заболеваемости ЭВИ.

Литература

- 1. Бессмертный Б.С., Ткачева М.Н. Статистические методы в эпидемиологии. М.:Медгиз, 1961. 106 с.
- 2. Демина А.В., Маркович Н.А., Нетесов С.В. Энтеровирусы. Часть 1: история открытия, таксономия, строение генома, эпидемиология Бюллетень СО РАМН, № 1 (129), 2008 г.

Дальневосточный Журнал Инфекционной Патологии ● №39 – 2020 г.

- 3. Савилов Е.Д., Астафьев В.А., Жданова С.Н., Заруднев Е.А. Эпидемиологический анализ: Методы статистической обработки материала. Новосибирск: Наука-Центр, 2011. 156 с.
- 4. Скачков М.В., Альмишева А.Ш., Плотников А.О., Немцева Н.В., Верещагин Н.Н., Скворцов В.О. Эпидемиологические и экологические аспекты энтеровирусной инфекции// Эпидемиология и вакцинопрофилактика- 2008. №6. -С. 29-35.
- 5. Drummond A.J., Suchard M.A., Xie D., et al. Bayesian phylogenetics with BEAUTi and the BEAST 1.7. // Molecular Biology and Evolution. 2012. Vol. 29, N8. P. 1969-1973.
- 6. Nix W.A, Oberste M.S, Pallansch M.A. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens // Journal of Clinical Microbiology. 2006. Vol. 44, N8. P. 2698-2704.
- 7. Shapiro B., Rambaut A., Drummond A.J. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences // Molecular Biology and Evolution. 2006. Vol. 23, N1. P. 7-9.

Сведения об ответственном авторе:

Сапега Елена Юрьевна — кандидат медицинских наук, руководитель Дальневосточного регионального научно-методического центра по изучению энтеровирусных инфекций ФБУН Хабаровский НИИ эпидемиологии и микробиологии. Роспотребнадзора: e-mail: evi.khv@mail.ru