УДК 578.838.1:615.038

СРАВНИТЕЛЬНЫЙ ЭФФЕКТ КРЕМНИЙЦИНК СОДЕРЖАЩЕГО ГЛИЦЕРОГИДРОГЕЛЯ И ТЕСТИРУЕМЫХ ИММУНОТРОПНЫХ ПРЕПАРАТОВ НА МОДЕЛИ ГРИППОЗНОЙ ИНФЕКЦИИ У МЫШЕЙ

Е.Н. Бурнатова 1 , О.В. Щипачева 2 , И.А. Тузанкина 2 , Т.Г.Хонина 3 , И.В.Рябухин 1 , Ю.В. Григорьева 4 , А. И. Мальчиков 1

Изучена противовирусная активность веществ и препаратов (кремнийцинксодержащий глицерогидрогель, пептид «In-58», гидролизат плаценты человека, полиоксидоний) в отношении вируса гриппа A/PR/8/34 (H1N1) при различных способах его введения лабораторным животным. Проведенные исследования показали, что препарат кремнийцинксодержащий глицерогидрогель обладал самым выраженным противовирусным действием в отличие от других включенных в эксперимент тестируемых препаратов в отношении вируса гриппа для лабораторных мышей.

Ключевые слова: Вирус гриппа, кремнийцинксодержащий глицерогидрогель, полиоксидоний, гидролизат плаценты человека.

COMPARATIVE ANTIVIRAL EFFECT OF OR-GANICOSILICONZINC GLYCEROHYDROGEL AND IMMUNOTROPIC DRUGS UNDER TEST ON MURINE INFLUENZA MODEL

BurnatovaYe.N.^{1*}, Shchipachova O.V.², Tuzankina I.A.², Honina T.G.³, Ryabukhin I.V.¹, Grigoryeva J.V.⁴, I.A.Malchikov¹

¹FBIS "Yekaterinburg Research Institute of Viral Infections" of Rospotrebnadzor (Russian Inspectorate for Consumer Rights and Human Welfare),

²Institute of Immunology and Physiology, UrO RAN (Ural Department of Russian Academy of Science).

³Institute of Organic Synthesis named after Ya. Postovsky, UrO RAN (Ural Department of Russian Academy of Science),

FSBEI HE USMU HMRF(Federal State Budgetary Educational Institution of Higher Education Ural ⁴State Medical University, Healthcare Ministry of the Russian Federation), Yekaterinburg

Antiviral activity of substances and drugs (organosiliconzinc glycerohydrogel, In-58 peptide, human placenta hydrolysate, polyoxidonium) administered to laboratory animals using various methods against A/PR/8/34 (H1N1) influenza virus was studied. The studies showed that organosiliconzinc glycerohydrogelhad the most pronounced antiviral effect as distinct from the other drugs under test included into the experiment on laboratory mice.

Key words: influenza virus, organosiliconzinc glycerohydrogel, polyoxidonium, human placenta hydrolysate.

¹ФГУН «Екатеринбургский НИИ вирусных инфекций» Роспотребнадзора,

 $^{^{2}}$ Институт иммунологии и физиологии УрО РАН,

³Институт органического синтеза им. И.Я. Постовского УрО РАН,

 $^{^4}$ ФГБОУ ВО УГМУ МЗ РФ, $\,$ г. Екатеринбург

Тяжелое молниеносное течение гриппозной инфекции часто приводит к летальным исходам и осложнениям, поэтому в структуре смертности от инфекционных заболеваний грипп занимает одно из первых мест [13,14]. В настоящее время особое внимание уделяется профилактике и возможности раннего лечения гриппозной инфекции. На сегодняшний день наиболее эффективным методом профилактики гриппа остается вакцинопрофилактика [7,15]. Однако, в последнее время дополнительно все чаще начинают использовать различные иммунотропные и противовирусные препараты, предупреждающие заражение гриппом и снижающие активность вируса в первые дни заражения [1,4,16].

Перечень таких препаратов постоянно пополняется вследствие синтеза новых химических соединений или путем проведения экспериментальных исследований по выявлению других свойств у ранее известных.

Для оценки эффективности нового лекарственного средства – кремнийцинксодержащего глицерогидрогеля [10,27,13] и тестируемых иммунотропных препаратов, а также выяснения возможности их использования было проведено экспериментальное исследование на модели гриппозной инфекции у лабораторных животных

Цель исследования – выявить эффективность и дать сравнительную оценку применения нового лекарственного средства – кремнийцинксодержащего глицерогидрогеля и тестируемых препаратов в профилактической дозе при гриппозной инфекции.

Материалы и методы.

Эталонный вирус. Был использован эталонный штамм вируса гриппа A/H1N1 (штамм A/PR8/34), полученный из Государственного Контрольного Института им. Л.А. Тарасевича, адаптированный к белым мышам. Вирус пассировали на 7-8 дневных куриных эмбрионах. В работе использовали вируссодержащую жидкость с инфекционным титром 7,0 lg ЭИД₅₀/0,2 мл. Гемагглютинирующий титр в реакции гемагглютинации составлял 1:512.

Для определения дозы заражения DLm = 50 в предварительный опыт было взято 30 белых беспородных лабораторных мышей и из них, сформировано 3 группы по 10 мышей, которым вводили интраназально вирус гриппа в объеме 0,05 мл в разведении 1:5, 1:10, 1:100. В эксперименте использовали дозировку вируса 1:10.

Исследуемые фармакологические композиции и тестируемые препараты:

Использованы: 1. Жидкая суспензия кремнийцинксодержащего глицерогидрогеля (**КЦГ**), полученная из института органического синтеза им. И. Я. Постовского УрО РАН. 2. Пептид «**In-58**», полученный из НИИ особо чистых биопрепаратов [3, 6]. 3. Препарат – гидролизат плаценты человека (**ГПЧ**) производства Биопродактс Индастри Ко Томигая Шибуя-ку, Токио [2, 22]. 4. Препарат Азоксимера бромид - полиоксидоний (**ПО**) - лиофилизат, разводимый для инъекций, производства ООО «НПО Петровакс Фарм») [9, 10, 11, 17, 19].

Дозы введения фармацевтической композиции и тестируемых препаратов, использованных в экспериментах, соответствовали нормативным дозам и дозам, полученным в предварительных исследованиях.

Лабораторные животные. Для проведения экспериментальных исследований по оценке наличия эффекта в профилактической дозе нового лекарственного средства КЦГ и тестируемых препаратов, используемых при гриппозной инфекции было использовано 110 беспородных белых мышей, которых получали из питомника-вивария при Екатеринбургском Медицинском Научном Центре профилактики и охраны здоровья рабочих промпредприятий г. Екатеринбурга. Животные содержались в стандартных условиях лабораторного вивария. Перед использованием в эксперименте животные проходили двухнедельный карантин и адаптацию в условиях данного вивария. Все исследования выполнялись в соответствии с правилами проведения работ по использованию экспериментальных животных (GLP), приказом МЗ РФ №267 от 19.06.03 г [10].

Для моделирования гриппозной инфекции были сформированы следующие группы:

- группа A (группа сравнения) (*n*=10), мыши массой 20–22 г, которых инфицировали под эфирным наркозом интраназально аллантоисной жидкостью, содержащей вирус гриппа A/PR/8/34 (H1N1) по 0,005 мл.
- **группа В** (*n*=10), эту группу составляли мыши массой 20–22 г, которым вводили смесь вируса гриппа A/PR8/34 с **КЦГ** в объеме 0,005 мл, интраназально, однократно, под эфирным наркозом.
- группа С (*n*=10), мыши массой 20–22 г, которым интраназально вводили 3,75 мг/кг пептида **In-58**, на следующие сутки инфицировали под эфирным наркозом интраназально аллантоисной жидкостью, содержащей вирус гриппа A/PR/8/34 (H1N1) по 0,005 мл. На 3-и и 5-е сутки интраназально в той же дозе закапывали In-58.
- **группа D** (*n*=10), мыши массой 20–22 г, для которых смешивали вирус гриппа A/PR8 с **ПО**, затем интраназально, однократно, под эфирным наркозом вводили смесь в объеме 0,005 мл. На 3-и и 5-е сутки интраназально вводили ПО.
- группа E (*n*=10), мыши массой 20–22 г, которым внутрибрюшинно вводили 224 мг/кг ГПЧ. На следующие сутки их инфицировали под эфирным наркозом интраназально аллантоисной жидкостью, содержащей вирус гриппа A/PR/8/34 (H1N1) по 0,005 мл. На 3-и и 5-е сутки им в/б вводили в той же дозе препарат ГПЧ.

- **группа F** (n=10), мыши массой 20–22 г, которым внутрибрюшинно вводили 3,75 мг/кг **In-58**, на следующие сутки инфицировали под эфирным наркозом интраназально аллантоисной жидкостью по 0,005 мл, содержащей вирус гриппа A/PR/8/34 (H1N1). На 3-и и 5-е сутки им вводили в/б в той же дозе препарат **In-58**.
- **группа G (контроль)** (*n*=20), мыши массой 20–22 г, которым в/б вводили 0,2 мл 0,9% физиологического раствора.

Оценка токсичности и развития клинических проявлений инфекции у лабораторных животных.

Общая продолжительность наблюдения за животными составляла 9 дней, причем в первые сутки после введения животные находились под непрерывным наблюдением. Регулярно фиксировали общее состояние животных, особенности их поведения, интенсивность и характер двигательной активности, наличие и характер судорог, координацию движений, частоту и глубину дыхательных движений, температуру, потребление корма и воды, изменение массы тела. Регистрировали сроки развития интоксикации и гибели животных.

Для статистического анализа полученных результатов использовали логранговый критерий в анализе выживаемости с оценкой вероятности летального исхода от времени S(t).

Результаты и обсуждение

В группе сравнения **A**, при экспериментальной гриппозной инфекции, наблюдалась выраженная клиническая картина на 4-й день, в виде нарушения координации движений, потери 1/5 массы тела от первоначального веса, заторможенность движений. У 40,0% мышей развилось поражение легких, были слышны хрипы и крепитация, на 8-е сутки они погибли, остальные выжили.

В группе **В** вводили интраназально КЦГ, выраженной клинической картины заболевания, типичной для гриппозной инфекции, не наблюдали. Животные оставались здоровыми, с нормальными параметрами потребления корма, воды, изменения массы тела в сторону увеличения. Только у 20% мышей на 7-е сутки была замечена вялость и пассивность в поведении и на 8-е они погибли, остальные выжили.

В группе С вводили пептид In-58 интраназально, активный образ жизни мышей сохранялся до 5-го дня наблюдения. На 5, 6-е сутки погибло 40% мышей, остальные остались живы.

В группе **D** вводили интраназально ПО, выраженной клинической картины заболевания, типичной для гриппозной инфекции, не наблюдали до 5-го дня эксперимента. После 5-го дня, фиксировалась выраженная клиническая картина в виде нарушения координации движений, потери около 1/5 массы тела от первоначального веса, заторможенность движений. У 80% мышей развились поражения легких, были слышны хрипы и крепитация и они на 4-5 день погибли, остальные остались живы.

В группе **E** внутрибрюшинно вводили ГПЧ, в первые дни наблюдения клинической картины у животных не развивалось, по-видимому, благодаря инъекциям препарата, оказывающим сдерживающий эффект на развитие инфекционного процесса, в отсутствие инъекций, на 7-й день одновременно у 60% мышей развились поражения легких, нарушение координации и они погибли, остальные выжили

В группе **F** внутрибрюшинно вводили пептид In-58, разведенный водой для иньекций, после каждой инъекции поведение мышей резко изменялось, сопровождаясь нарушением координации движения. На 6, 7, 8-е сутки мыши начали погибать (летальность составила 100%).

В контрольной группе **G**, все экспериментальные животные остались живыми. Признаков интоксикации, отклонений в поведении, координации движения не было выявлено в течение всего срока наблюдения. (Табл.)

Сравнение с группой А по числу выживших экспериментальных животных

Таблица

opablicing or pyllion it is mosty businesses exchapming translations with the mosty business exchapming the most of the most o						
Показатель	А группа сравнения	В КЦГ и/н	С In-58 и/н	D ПО и/н	Е ГПЧ в/б	F In-58 в/б
Выживаемость, %	60,0	80,0	60,0	20,0	40,0	0
S(t)		0,740	-0,255	-1,642	-0,703	-1,762

Таким образом, по результатам проведенных экспериментальных исследований, можно сделать вывод о том, что кремнийцинксодержащий глицерогидрогель, обладал самым выраженным защитным действием из всех в отношении вируса гриппа тестируемых препаратов.

Список литературы

1.Воробьев А. А. Принципы классификации и стратегия применения иммуномодуляторов в медицине // Журн. Микробиол. – 2002. – №4 – С. 93-97.

- 2.Громова О. А., Торшин И. Ю., Диброва Е. А. и др. Мировой опыт применения препаратов из плаценты человека: результаты клинических и экспериментальных исследований. Обзор // Пластическая хирургия и косметология 2011. №3. С. 385-576.
- 3.Дамбаева С.В., Ким К.Ф., Мазуров Д.В. Влияние тимических пептидов на функциональную активность фагоцитарных клеток периферической крови // Журн. микробиол. -2002. № 6. С. 55-60.
- 4.Киселев О.И., Деева Э.Г., Мельникова Т.И., и др. Новый противовирусный препарат Триазавирин. Результаты II фазы клинического исследования // Вопросы вирусологии 2012 – Т.57. - №6.-С. 9-12.
- 5.Костинов М.П., Чучалин А.Г., Чебыкина А.В. Особенности формирования поствакцинального иммунитета к гриппу у пациентов с хронической бронхо-легочной патологией // Инфекционные болезни. 2011. №3. том 9 С.1-5.
- 6.Кузник Б.И., Хавинсон В.Х., Витковский Ю.А. Применение пептидных биорегуляторов в хирургии и онкологиии -Чита, 2001. 352 с.
- 7.Минушкин О. Н., Калинин А. В., Масловский Л. В. и др.. Лаеннек: опыт внутривенного капельного введения при лечении некоторых диффузных заболеваний печени // Клинические перспективы гастроэнтерологии, гепатологии. 2005. № 2. С. 27-30.
- 8. Миронов А.Н. Руководство по проведению доклинических исследований лекарственных средств. Ч. 1. Москва: Гриф и К, 2012. 944 с.
- 9.Моисеева Е. Л., Соловьёв К. И., Гришенков Г. В. Опыт клинического применения полиоксидония в комплексной терапии заболеваний органов дыхания // Росс. мед. журн. 2013. № 7. С. 595
- 10.Петров Р. В., Хаитов Р. М., Некрасов А. В. и др. Полиоксидоний иммуномодулятор последнего поколения: итоги трехлетнего клинического применения // Аллергия, астма и клин. иммунол. 1999. № 3. С. 3-6.
- 11.Пинегин Б. В. Полиоксидоний новое поколение иммуномодуляторов с известной структурой и механизмом действия// Аллергия, астма и клин, иммунол. 2000. № 1. С. 27-28.
- 12. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ под редакцией Р.У. Хабриева М.: ОАО «Издательство «Медицина», 2005 г., 832 с.
- 13.Салтыкова И.С., Герасимов А.Н., Покровский В.И. Влияние заболеваемости гриппом на смертность от сердечно-сосудистой патологии среди лиц пожилого возраста // Материалы IX съезда Всеросс. научно-практич. общества эпидемиол., микробиол. и паразитол. Москва 2007 С. 254-255.
- 14.Свистунова Н. В., Баранова И. П., Зыкова О. А., Федорова О. В. Сравнительный анализ клинических особенностей гриппа А(H1N1) и гриппа В у госпитализированных больных // Инфекционные болезни. 2013. Т. 11, № 1. С. 27–32.
- 15.Семенова Л.В., Романенко В.В., Слободенюк А.В. Опыт.организации вакцинопрофилактики гриппа в Свердловской области // Уральский мед. журнал. 2007. №11(39). С. 99-101.
- 16.Учайкин В.Ф., Харламова С.Г., Чешик С.Г. Применение арбидола и амиксина в качестве этиотропной терапии гриппа и ОРВИ у детей. // Педиатрия 2004. №5.-С. 73-77.
- 17.Хаитов Р. М., Пинегин Б. В. Современные иммуномодуляторы: основные принципы их применения // Иммунология 2000 № 5 С. 4-7.
- 18.Чупахин О.Н., Бондарев А.Н., Штанько И.Н. и др. Синтез и свойства биологически активного кремния, цинкглицерогидрогеля // Изв. АН. Сер.хим. 2014. № 5.- С. 1219–1224.
- 19.Шпоть Е. В., Султанова Е. А. Применение иммуномодулятора Полиоксидония при хронических воспалительных заболеваниях мочеполовых органов // Урология 2012. № 5. С. 56-64
- 20.Штанько И.Н., Хонина Т.Г., Бондарев А.Н. и др. Кремнийцинксодержащий глицерогидрогель, обладающий ранозаживляющей, регенерирующей и антибактериальной активностью // Пат. РФ № 2520969, 2014. Бюл. №18.
- 21.Штанько И.Н., Ваневская Е.А., Мандра Ю.В. и др. Кремнийцинксодержащий глицерогидрогель потенциальный иммунотропный препарат топического применения // Российский иммунологический журнал. 2015. Т. 9(18), № 2(1). С. 514-516.
- 22.Sakurako N., Takefumi I., Kikumi O., et.al. Canine bone marrow cells differentiate into hepatocyte-like cells and placental hydrolysate is a potential inducer // Research in Veterinary Science 2009 V. 87 P. 1–6.

Сведения об авторах:

Бурнатова Екатерина Николаевна — научный сотрудник лаборатории респираторных вирусных инфекций, ФБУН «Екатеринбургский НИИ вирусных инфекции» Роспотребнадзора. 620030, г. Екатеринбург ул. Летняя 23, ФБУН ЕНИИВИ. Тел.: (343) 261-99-47, E-mail: <u>virus@eniivi.ru</u>